Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+36-36x+9x^{2}+4x+16\left(6-3x\right)+28=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(6-3x\right)^{2}.
10x^{2}+36-36x+4x+16\left(6-3x\right)+28=0
Pahekotia te x^{2} me 9x^{2}, ka 10x^{2}.
10x^{2}+36-32x+16\left(6-3x\right)+28=0
Pahekotia te -36x me 4x, ka -32x.
10x^{2}+36-32x+96-48x+28=0
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te 6-3x.
10x^{2}+132-32x-48x+28=0
Tāpirihia te 36 ki te 96, ka 132.
10x^{2}+132-80x+28=0
Pahekotia te -32x me -48x, ka -80x.
10x^{2}+160-80x=0
Tāpirihia te 132 ki te 28, ka 160.
10x^{2}-80x+160=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 10\times 160}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, -80 mō b, me 160 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 10\times 160}}{2\times 10}
Pūrua -80.
x=\frac{-\left(-80\right)±\sqrt{6400-40\times 160}}{2\times 10}
Whakareatia -4 ki te 10.
x=\frac{-\left(-80\right)±\sqrt{6400-6400}}{2\times 10}
Whakareatia -40 ki te 160.
x=\frac{-\left(-80\right)±\sqrt{0}}{2\times 10}
Tāpiri 6400 ki te -6400.
x=-\frac{-80}{2\times 10}
Tuhia te pūtakerua o te 0.
x=\frac{80}{2\times 10}
Ko te tauaro o -80 ko 80.
x=\frac{80}{20}
Whakareatia 2 ki te 10.
x=4
Whakawehe 80 ki te 20.
x^{2}+36-36x+9x^{2}+4x+16\left(6-3x\right)+28=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(6-3x\right)^{2}.
10x^{2}+36-36x+4x+16\left(6-3x\right)+28=0
Pahekotia te x^{2} me 9x^{2}, ka 10x^{2}.
10x^{2}+36-32x+16\left(6-3x\right)+28=0
Pahekotia te -36x me 4x, ka -32x.
10x^{2}+36-32x+96-48x+28=0
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te 6-3x.
10x^{2}+132-32x-48x+28=0
Tāpirihia te 36 ki te 96, ka 132.
10x^{2}+132-80x+28=0
Pahekotia te -32x me -48x, ka -80x.
10x^{2}+160-80x=0
Tāpirihia te 132 ki te 28, ka 160.
10x^{2}-80x=-160
Tangohia te 160 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{10x^{2}-80x}{10}=-\frac{160}{10}
Whakawehea ngā taha e rua ki te 10.
x^{2}+\left(-\frac{80}{10}\right)x=-\frac{160}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
x^{2}-8x=-\frac{160}{10}
Whakawehe -80 ki te 10.
x^{2}-8x=-16
Whakawehe -160 ki te 10.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=-16+16
Pūrua -4.
x^{2}-8x+16=0
Tāpiri -16 ki te 16.
\left(x-4\right)^{2}=0
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=0 x-4=0
Whakarūnātia.
x=4 x=4
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=4
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}