Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+25-10x+x^{2}=\left(5-2x\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-x\right)^{2}.
2x^{2}+25-10x=\left(5-2x\right)^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+25-10x=25-20x+4x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-2x\right)^{2}.
2x^{2}+25-10x-25=-20x+4x^{2}
Tangohia te 25 mai i ngā taha e rua.
2x^{2}-10x=-20x+4x^{2}
Tangohia te 25 i te 25, ka 0.
2x^{2}-10x+20x=4x^{2}
Me tāpiri te 20x ki ngā taha e rua.
2x^{2}+10x=4x^{2}
Pahekotia te -10x me 20x, ka 10x.
2x^{2}+10x-4x^{2}=0
Tangohia te 4x^{2} mai i ngā taha e rua.
-2x^{2}+10x=0
Pahekotia te 2x^{2} me -4x^{2}, ka -2x^{2}.
x\left(-2x+10\right)=0
Tauwehea te x.
x=0 x=5
Hei kimi otinga whārite, me whakaoti te x=0 me te -2x+10=0.
x^{2}+25-10x+x^{2}=\left(5-2x\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-x\right)^{2}.
2x^{2}+25-10x=\left(5-2x\right)^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+25-10x=25-20x+4x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-2x\right)^{2}.
2x^{2}+25-10x-25=-20x+4x^{2}
Tangohia te 25 mai i ngā taha e rua.
2x^{2}-10x=-20x+4x^{2}
Tangohia te 25 i te 25, ka 0.
2x^{2}-10x+20x=4x^{2}
Me tāpiri te 20x ki ngā taha e rua.
2x^{2}+10x=4x^{2}
Pahekotia te -10x me 20x, ka 10x.
2x^{2}+10x-4x^{2}=0
Tangohia te 4x^{2} mai i ngā taha e rua.
-2x^{2}+10x=0
Pahekotia te 2x^{2} me -4x^{2}, ka -2x^{2}.
x=\frac{-10±\sqrt{10^{2}}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 10 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±10}{2\left(-2\right)}
Tuhia te pūtakerua o te 10^{2}.
x=\frac{-10±10}{-4}
Whakareatia 2 ki te -2.
x=\frac{0}{-4}
Nā, me whakaoti te whārite x=\frac{-10±10}{-4} ina he tāpiri te ±. Tāpiri -10 ki te 10.
x=0
Whakawehe 0 ki te -4.
x=-\frac{20}{-4}
Nā, me whakaoti te whārite x=\frac{-10±10}{-4} ina he tango te ±. Tango 10 mai i -10.
x=5
Whakawehe -20 ki te -4.
x=0 x=5
Kua oti te whārite te whakatau.
x^{2}+25-10x+x^{2}=\left(5-2x\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-x\right)^{2}.
2x^{2}+25-10x=\left(5-2x\right)^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+25-10x=25-20x+4x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-2x\right)^{2}.
2x^{2}+25-10x+20x=25+4x^{2}
Me tāpiri te 20x ki ngā taha e rua.
2x^{2}+25+10x=25+4x^{2}
Pahekotia te -10x me 20x, ka 10x.
2x^{2}+25+10x-4x^{2}=25
Tangohia te 4x^{2} mai i ngā taha e rua.
-2x^{2}+25+10x=25
Pahekotia te 2x^{2} me -4x^{2}, ka -2x^{2}.
-2x^{2}+10x=25-25
Tangohia te 25 mai i ngā taha e rua.
-2x^{2}+10x=0
Tangohia te 25 i te 25, ka 0.
\frac{-2x^{2}+10x}{-2}=\frac{0}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{10}{-2}x=\frac{0}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-5x=\frac{0}{-2}
Whakawehe 10 ki te -2.
x^{2}-5x=0
Whakawehe 0 ki te -2.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Whakarūnātia.
x=5 x=0
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.