Whakaoti mō m
m=-\frac{x^{2}-4x-9}{2x+1}
x\neq -\frac{1}{2}
Whakaoti mō x
x=\sqrt{m^{2}-5m+13}-m+2
x=-\sqrt{m^{2}-5m+13}-m+2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+2mx-4x+m-9=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2m-4 ki te x.
2mx-4x+m-9=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2mx+m-9=-x^{2}+4x
Me tāpiri te 4x ki ngā taha e rua.
2mx+m=-x^{2}+4x+9
Me tāpiri te 9 ki ngā taha e rua.
\left(2x+1\right)m=-x^{2}+4x+9
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(2x+1\right)m=9+4x-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(2x+1\right)m}{2x+1}=\frac{9+4x-x^{2}}{2x+1}
Whakawehea ngā taha e rua ki te 2x+1.
m=\frac{9+4x-x^{2}}{2x+1}
Mā te whakawehe ki te 2x+1 ka wetekia te whakareanga ki te 2x+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}