Whakaoti mō x (complex solution)
x=7+\sqrt{17}i\approx 7+4.123105626i
x=-\sqrt{17}i+7\approx 7-4.123105626i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+196-28x+x^{2}=8^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(14-x\right)^{2}.
2x^{2}+196-28x=8^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+196-28x=64
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
2x^{2}+196-28x-64=0
Tangohia te 64 mai i ngā taha e rua.
2x^{2}+132-28x=0
Tangohia te 64 i te 196, ka 132.
2x^{2}-28x+132=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 2\times 132}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -28 mō b, me 132 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 2\times 132}}{2\times 2}
Pūrua -28.
x=\frac{-\left(-28\right)±\sqrt{784-8\times 132}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-28\right)±\sqrt{784-1056}}{2\times 2}
Whakareatia -8 ki te 132.
x=\frac{-\left(-28\right)±\sqrt{-272}}{2\times 2}
Tāpiri 784 ki te -1056.
x=\frac{-\left(-28\right)±4\sqrt{17}i}{2\times 2}
Tuhia te pūtakerua o te -272.
x=\frac{28±4\sqrt{17}i}{2\times 2}
Ko te tauaro o -28 ko 28.
x=\frac{28±4\sqrt{17}i}{4}
Whakareatia 2 ki te 2.
x=\frac{28+4\sqrt{17}i}{4}
Nā, me whakaoti te whārite x=\frac{28±4\sqrt{17}i}{4} ina he tāpiri te ±. Tāpiri 28 ki te 4i\sqrt{17}.
x=7+\sqrt{17}i
Whakawehe 28+4i\sqrt{17} ki te 4.
x=\frac{-4\sqrt{17}i+28}{4}
Nā, me whakaoti te whārite x=\frac{28±4\sqrt{17}i}{4} ina he tango te ±. Tango 4i\sqrt{17} mai i 28.
x=-\sqrt{17}i+7
Whakawehe 28-4i\sqrt{17} ki te 4.
x=7+\sqrt{17}i x=-\sqrt{17}i+7
Kua oti te whārite te whakatau.
x^{2}+196-28x+x^{2}=8^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(14-x\right)^{2}.
2x^{2}+196-28x=8^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+196-28x=64
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
2x^{2}-28x=64-196
Tangohia te 196 mai i ngā taha e rua.
2x^{2}-28x=-132
Tangohia te 196 i te 64, ka -132.
\frac{2x^{2}-28x}{2}=-\frac{132}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{28}{2}\right)x=-\frac{132}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-14x=-\frac{132}{2}
Whakawehe -28 ki te 2.
x^{2}-14x=-66
Whakawehe -132 ki te 2.
x^{2}-14x+\left(-7\right)^{2}=-66+\left(-7\right)^{2}
Whakawehea te -14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -7. Nā, tāpiria te pūrua o te -7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-14x+49=-66+49
Pūrua -7.
x^{2}-14x+49=-17
Tāpiri -66 ki te 49.
\left(x-7\right)^{2}=-17
Tauwehea x^{2}-14x+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{-17}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-7=\sqrt{17}i x-7=-\sqrt{17}i
Whakarūnātia.
x=7+\sqrt{17}i x=-\sqrt{17}i+7
Me tāpiri 7 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}