Whakaoti mō x
x = \frac{\sqrt{813} - 3}{4} \approx 6.378288715
x=\frac{-\sqrt{813}-3}{4}\approx -7.878288715
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+1.5x-4.25=46
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+1.5x-4.25-46=46-46
Me tango 46 mai i ngā taha e rua o te whārite.
x^{2}+1.5x-4.25-46=0
Mā te tango i te 46 i a ia ake anō ka toe ko te 0.
x^{2}+1.5x-50.25=0
Tango 46 mai i -4.25.
x=\frac{-1.5±\sqrt{1.5^{2}-4\left(-50.25\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 1.5 mō b, me -50.25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1.5±\sqrt{2.25-4\left(-50.25\right)}}{2}
Pūruatia 1.5 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-1.5±\sqrt{2.25+201}}{2}
Whakareatia -4 ki te -50.25.
x=\frac{-1.5±\sqrt{203.25}}{2}
Tāpiri 2.25 ki te 201.
x=\frac{-1.5±\frac{\sqrt{813}}{2}}{2}
Tuhia te pūtakerua o te 203.25.
x=\frac{\sqrt{813}-3}{2\times 2}
Nā, me whakaoti te whārite x=\frac{-1.5±\frac{\sqrt{813}}{2}}{2} ina he tāpiri te ±. Tāpiri -1.5 ki te \frac{\sqrt{813}}{2}.
x=\frac{\sqrt{813}-3}{4}
Whakawehe \frac{-3+\sqrt{813}}{2} ki te 2.
x=\frac{-\sqrt{813}-3}{2\times 2}
Nā, me whakaoti te whārite x=\frac{-1.5±\frac{\sqrt{813}}{2}}{2} ina he tango te ±. Tango \frac{\sqrt{813}}{2} mai i -1.5.
x=\frac{-\sqrt{813}-3}{4}
Whakawehe \frac{-3-\sqrt{813}}{2} ki te 2.
x=\frac{\sqrt{813}-3}{4} x=\frac{-\sqrt{813}-3}{4}
Kua oti te whārite te whakatau.
x^{2}+1.5x-4.25=46
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+1.5x-4.25-\left(-4.25\right)=46-\left(-4.25\right)
Me tāpiri 4.25 ki ngā taha e rua o te whārite.
x^{2}+1.5x=46-\left(-4.25\right)
Mā te tango i te -4.25 i a ia ake anō ka toe ko te 0.
x^{2}+1.5x=50.25
Tango -4.25 mai i 46.
x^{2}+1.5x+0.75^{2}=50.25+0.75^{2}
Whakawehea te 1.5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 0.75. Nā, tāpiria te pūrua o te 0.75 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+1.5x+0.5625=50.25+0.5625
Pūruatia 0.75 mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+1.5x+0.5625=50.8125
Tāpiri 50.25 ki te 0.5625 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+0.75\right)^{2}=50.8125
Tauwehea x^{2}+1.5x+0.5625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.75\right)^{2}}=\sqrt{50.8125}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+0.75=\frac{\sqrt{813}}{4} x+0.75=-\frac{\sqrt{813}}{4}
Whakarūnātia.
x=\frac{\sqrt{813}-3}{4} x=\frac{-\sqrt{813}-3}{4}
Me tango 0.75 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}