Whakaoti mō x
x=1
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(x^{2}+\left(\frac{x+3}{2}\right)^{2}-8x-2\times \frac{x+3}{2}\right)+14=0
Whakareatia ngā taha e rua o te whārite ki te 2.
2\left(x^{2}+\frac{\left(x+3\right)^{2}}{2^{2}}-8x-2\times \frac{x+3}{2}\right)+14=0
Kia whakarewa i te \frac{x+3}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}}+\frac{\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{2}-8x ki te \frac{2^{2}}{2^{2}}.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Tā te mea he rite te tauraro o \frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}} me \frac{\left(x+3\right)^{2}}{2^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2\left(\frac{4x^{2}-32x+x^{2}+6x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Mahia ngā whakarea i roto o \left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2}.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Whakakotahitia ngā kupu rite i 4x^{2}-32x+x^{2}+6x+9.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\frac{2\left(x+3\right)}{2}\right)+14=0
Tuhia te 2\times \frac{x+3}{2} hei hautanga kotahi.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\left(x+3\right)\right)+14=0
Me whakakore te 2 me te 2.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-x-3\right)+14=0
Hei kimi i te tauaro o x+3, kimihia te tauaro o ia taurangi.
2\left(\frac{5x^{2}-26x+9}{2^{2}}+\frac{\left(-x-3\right)\times 2^{2}}{2^{2}}\right)+14=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -x-3 ki te \frac{2^{2}}{2^{2}}.
2\times \frac{5x^{2}-26x+9+\left(-x-3\right)\times 2^{2}}{2^{2}}+14=0
Tā te mea he rite te tauraro o \frac{5x^{2}-26x+9}{2^{2}} me \frac{\left(-x-3\right)\times 2^{2}}{2^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2\times \frac{5x^{2}-26x+9-4x-12}{2^{2}}+14=0
Mahia ngā whakarea i roto o 5x^{2}-26x+9+\left(-x-3\right)\times 2^{2}.
2\times \frac{5x^{2}-30x-3}{2^{2}}+14=0
Whakakotahitia ngā kupu rite i 5x^{2}-26x+9-4x-12.
\frac{2\left(5x^{2}-30x-3\right)}{2^{2}}+14=0
Tuhia te 2\times \frac{5x^{2}-30x-3}{2^{2}} hei hautanga kotahi.
\frac{5x^{2}-30x-3}{2}+14=0
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{5}{2}x^{2}-15x-\frac{3}{2}+14=0
Whakawehea ia wā o 5x^{2}-30x-3 ki te 2, kia riro ko \frac{5}{2}x^{2}-15x-\frac{3}{2}.
\frac{5}{2}x^{2}-15x+\frac{25}{2}=0
Tāpirihia te -\frac{3}{2} ki te 14, ka \frac{25}{2}.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times \frac{5}{2}\times \frac{25}{2}}}{2\times \frac{5}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{5}{2} mō a, -15 mō b, me \frac{25}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times \frac{5}{2}\times \frac{25}{2}}}{2\times \frac{5}{2}}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225-10\times \frac{25}{2}}}{2\times \frac{5}{2}}
Whakareatia -4 ki te \frac{5}{2}.
x=\frac{-\left(-15\right)±\sqrt{225-125}}{2\times \frac{5}{2}}
Whakareatia -10 ki te \frac{25}{2}.
x=\frac{-\left(-15\right)±\sqrt{100}}{2\times \frac{5}{2}}
Tāpiri 225 ki te -125.
x=\frac{-\left(-15\right)±10}{2\times \frac{5}{2}}
Tuhia te pūtakerua o te 100.
x=\frac{15±10}{2\times \frac{5}{2}}
Ko te tauaro o -15 ko 15.
x=\frac{15±10}{5}
Whakareatia 2 ki te \frac{5}{2}.
x=\frac{25}{5}
Nā, me whakaoti te whārite x=\frac{15±10}{5} ina he tāpiri te ±. Tāpiri 15 ki te 10.
x=5
Whakawehe 25 ki te 5.
x=\frac{5}{5}
Nā, me whakaoti te whārite x=\frac{15±10}{5} ina he tango te ±. Tango 10 mai i 15.
x=1
Whakawehe 5 ki te 5.
x=5 x=1
Kua oti te whārite te whakatau.
2\left(x^{2}+\left(\frac{x+3}{2}\right)^{2}-8x-2\times \frac{x+3}{2}\right)+14=0
Whakareatia ngā taha e rua o te whārite ki te 2.
2\left(x^{2}+\frac{\left(x+3\right)^{2}}{2^{2}}-8x-2\times \frac{x+3}{2}\right)+14=0
Kia whakarewa i te \frac{x+3}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}}+\frac{\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{2}-8x ki te \frac{2^{2}}{2^{2}}.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Tā te mea he rite te tauraro o \frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}} me \frac{\left(x+3\right)^{2}}{2^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2\left(\frac{4x^{2}-32x+x^{2}+6x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Mahia ngā whakarea i roto o \left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2}.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
Whakakotahitia ngā kupu rite i 4x^{2}-32x+x^{2}+6x+9.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\frac{2\left(x+3\right)}{2}\right)+14=0
Tuhia te 2\times \frac{x+3}{2} hei hautanga kotahi.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\left(x+3\right)\right)+14=0
Me whakakore te 2 me te 2.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-x-3\right)+14=0
Hei kimi i te tauaro o x+3, kimihia te tauaro o ia taurangi.
2\left(\frac{5x^{2}-26x+9}{2^{2}}+\frac{\left(-x-3\right)\times 2^{2}}{2^{2}}\right)+14=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -x-3 ki te \frac{2^{2}}{2^{2}}.
2\times \frac{5x^{2}-26x+9+\left(-x-3\right)\times 2^{2}}{2^{2}}+14=0
Tā te mea he rite te tauraro o \frac{5x^{2}-26x+9}{2^{2}} me \frac{\left(-x-3\right)\times 2^{2}}{2^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2\times \frac{5x^{2}-26x+9-4x-12}{2^{2}}+14=0
Mahia ngā whakarea i roto o 5x^{2}-26x+9+\left(-x-3\right)\times 2^{2}.
2\times \frac{5x^{2}-30x-3}{2^{2}}+14=0
Whakakotahitia ngā kupu rite i 5x^{2}-26x+9-4x-12.
\frac{2\left(5x^{2}-30x-3\right)}{2^{2}}+14=0
Tuhia te 2\times \frac{5x^{2}-30x-3}{2^{2}} hei hautanga kotahi.
\frac{5x^{2}-30x-3}{2}+14=0
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{5}{2}x^{2}-15x-\frac{3}{2}+14=0
Whakawehea ia wā o 5x^{2}-30x-3 ki te 2, kia riro ko \frac{5}{2}x^{2}-15x-\frac{3}{2}.
\frac{5}{2}x^{2}-15x+\frac{25}{2}=0
Tāpirihia te -\frac{3}{2} ki te 14, ka \frac{25}{2}.
\frac{5}{2}x^{2}-15x=-\frac{25}{2}
Tangohia te \frac{25}{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{\frac{5}{2}x^{2}-15x}{\frac{5}{2}}=-\frac{\frac{25}{2}}{\frac{5}{2}}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{15}{\frac{5}{2}}\right)x=-\frac{\frac{25}{2}}{\frac{5}{2}}
Mā te whakawehe ki te \frac{5}{2} ka wetekia te whakareanga ki te \frac{5}{2}.
x^{2}-6x=-\frac{\frac{25}{2}}{\frac{5}{2}}
Whakawehe -15 ki te \frac{5}{2} mā te whakarea -15 ki te tau huripoki o \frac{5}{2}.
x^{2}-6x=-5
Whakawehe -\frac{25}{2} ki te \frac{5}{2} mā te whakarea -\frac{25}{2} ki te tau huripoki o \frac{5}{2}.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-5+9
Pūrua -3.
x^{2}-6x+9=4
Tāpiri -5 ki te 9.
\left(x-3\right)^{2}=4
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=2 x-3=-2
Whakarūnātia.
x=5 x=1
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}