Whakaoti mō x (complex solution)
x=\frac{-\sqrt{6}+\sqrt{14}i}{2}\approx -1.224744871+1.870828693i
x=\frac{-\sqrt{14}i-\sqrt{6}}{2}\approx -1.224744871-1.870828693i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+\sqrt{6}x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\sqrt{6}±\sqrt{\left(\sqrt{6}\right)^{2}-4\times 5}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, \sqrt{6} mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\sqrt{6}±\sqrt{6-4\times 5}}{2}
Pūrua \sqrt{6}.
x=\frac{-\sqrt{6}±\sqrt{6-20}}{2}
Whakareatia -4 ki te 5.
x=\frac{-\sqrt{6}±\sqrt{-14}}{2}
Tāpiri 6 ki te -20.
x=\frac{-\sqrt{6}±\sqrt{14}i}{2}
Tuhia te pūtakerua o te -14.
x=\frac{-\sqrt{6}+\sqrt{14}i}{2}
Nā, me whakaoti te whārite x=\frac{-\sqrt{6}±\sqrt{14}i}{2} ina he tāpiri te ±. Tāpiri -\sqrt{6} ki te i\sqrt{14}.
x=\frac{-\sqrt{14}i-\sqrt{6}}{2}
Nā, me whakaoti te whārite x=\frac{-\sqrt{6}±\sqrt{14}i}{2} ina he tango te ±. Tango i\sqrt{14} mai i -\sqrt{6}.
x=\frac{-\sqrt{6}+\sqrt{14}i}{2} x=\frac{-\sqrt{14}i-\sqrt{6}}{2}
Kua oti te whārite te whakatau.
x^{2}+\sqrt{6}x+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+\sqrt{6}x+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
x^{2}+\sqrt{6}x=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
x^{2}+\sqrt{6}x+\left(\frac{\sqrt{6}}{2}\right)^{2}=-5+\left(\frac{\sqrt{6}}{2}\right)^{2}
Whakawehea te \sqrt{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{\sqrt{6}}{2}. Nā, tāpiria te pūrua o te \frac{\sqrt{6}}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\sqrt{6}x+\frac{3}{2}=-5+\frac{3}{2}
Pūrua \frac{\sqrt{6}}{2}.
x^{2}+\sqrt{6}x+\frac{3}{2}=-\frac{7}{2}
Tāpiri -5 ki te \frac{3}{2}.
\left(x+\frac{\sqrt{6}}{2}\right)^{2}=-\frac{7}{2}
Tauwehea x^{2}+\sqrt{6}x+\frac{3}{2}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{\sqrt{6}}{2}\right)^{2}}=\sqrt{-\frac{7}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{\sqrt{6}}{2}=\frac{\sqrt{14}i}{2} x+\frac{\sqrt{6}}{2}=-\frac{\sqrt{14}i}{2}
Whakarūnātia.
x=\frac{-\sqrt{6}+\sqrt{14}i}{2} x=\frac{-\sqrt{14}i-\sqrt{6}}{2}
Me tango \frac{\sqrt{6}}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}