Whakaoti mō b (complex solution)
\left\{\begin{matrix}b=-ax-\frac{c}{x}\text{, }&x\neq 0\text{ and }a\neq 0\\b\in \mathrm{C}\text{, }&c=0\text{ and }x=0\text{ and }a\neq 0\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}b=-ax-\frac{c}{x}\text{, }&x\neq 0\text{ and }a\neq 0\\b\in \mathrm{R}\text{, }&c=0\text{ and }x=0\text{ and }a\neq 0\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=-\frac{bx+c}{x^{2}}\text{, }&\left(c\neq 0\text{ or }b\neq 0\right)\text{ and }\left(b=0\text{ or }x\neq -\frac{c}{b}\right)\text{ and }x\neq 0\text{ and }c\neq -bx\\a\neq 0\text{, }&c=0\text{ and }x=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
ax^{2}+bx+a\times \left(\frac{b}{2a}\right)^{2}=-c+a\times \left(\frac{b}{2a}\right)^{2}
Whakareatia ngā taha e rua o te whārite ki te a.
ax^{2}+bx+a\times \frac{b^{2}}{\left(2a\right)^{2}}=-c+a\times \left(\frac{b}{2a}\right)^{2}
Kia whakarewa i te \frac{b}{2a} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
ax^{2}+bx+\frac{ab^{2}}{\left(2a\right)^{2}}=-c+a\times \left(\frac{b}{2a}\right)^{2}
Tuhia te a\times \frac{b^{2}}{\left(2a\right)^{2}} hei hautanga kotahi.
ax^{2}+bx+\frac{ab^{2}}{\left(2a\right)^{2}}=-c+a\times \frac{b^{2}}{\left(2a\right)^{2}}
Kia whakarewa i te \frac{b}{2a} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
ax^{2}+bx+\frac{ab^{2}}{\left(2a\right)^{2}}=-c+\frac{ab^{2}}{\left(2a\right)^{2}}
Tuhia te a\times \frac{b^{2}}{\left(2a\right)^{2}} hei hautanga kotahi.
ax^{2}+bx+\frac{ab^{2}}{2^{2}a^{2}}=-c+\frac{ab^{2}}{\left(2a\right)^{2}}
Whakarohaina te \left(2a\right)^{2}.
ax^{2}+bx+\frac{ab^{2}}{4a^{2}}=-c+\frac{ab^{2}}{\left(2a\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
ax^{2}+bx+\frac{b^{2}}{4a}=-c+\frac{ab^{2}}{\left(2a\right)^{2}}
Me whakakore tahi te a i te taurunga me te tauraro.
ax^{2}+bx+\frac{b^{2}}{4a}=-c+\frac{ab^{2}}{2^{2}a^{2}}
Whakarohaina te \left(2a\right)^{2}.
ax^{2}+bx+\frac{b^{2}}{4a}=-c+\frac{ab^{2}}{4a^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
ax^{2}+bx+\frac{b^{2}}{4a}=-c+\frac{b^{2}}{4a}
Me whakakore tahi te a i te taurunga me te tauraro.
ax^{2}+bx+\frac{b^{2}}{4a}-\frac{b^{2}}{4a}=-c
Tangohia te \frac{b^{2}}{4a} mai i ngā taha e rua.
ax^{2}\times 4a+bx\times 4a+b^{2}-b^{2}=-4ac
Whakareatia ngā taha e rua o te whārite ki te 4a.
4aax^{2}+4abx+b^{2}-b^{2}=-4ac
Whakaraupapatia anō ngā kīanga tau.
4a^{2}x^{2}+4abx+b^{2}-b^{2}=-4ac
Whakareatia te a ki te a, ka a^{2}.
4a^{2}x^{2}+4abx=-4ac
Pahekotia te b^{2} me -b^{2}, ka 0.
4abx=-4ac-4a^{2}x^{2}
Tangohia te 4a^{2}x^{2} mai i ngā taha e rua.
4axb=-4a^{2}x^{2}-4ac
He hanga arowhānui tō te whārite.
\frac{4axb}{4ax}=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Whakawehea ngā taha e rua ki te 4ax.
b=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Mā te whakawehe ki te 4ax ka wetekia te whakareanga ki te 4ax.
b=-ax-\frac{c}{x}
Whakawehe -4a\left(c+ax^{2}\right) ki te 4ax.
ax^{2}+bx+a\times \left(\frac{b}{2a}\right)^{2}=-c+a\times \left(\frac{b}{2a}\right)^{2}
Whakareatia ngā taha e rua o te whārite ki te a.
ax^{2}+bx+a\times \frac{b^{2}}{\left(2a\right)^{2}}=-c+a\times \left(\frac{b}{2a}\right)^{2}
Kia whakarewa i te \frac{b}{2a} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
ax^{2}+bx+\frac{ab^{2}}{\left(2a\right)^{2}}=-c+a\times \left(\frac{b}{2a}\right)^{2}
Tuhia te a\times \frac{b^{2}}{\left(2a\right)^{2}} hei hautanga kotahi.
ax^{2}+bx+\frac{ab^{2}}{\left(2a\right)^{2}}=-c+a\times \frac{b^{2}}{\left(2a\right)^{2}}
Kia whakarewa i te \frac{b}{2a} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
ax^{2}+bx+\frac{ab^{2}}{\left(2a\right)^{2}}=-c+\frac{ab^{2}}{\left(2a\right)^{2}}
Tuhia te a\times \frac{b^{2}}{\left(2a\right)^{2}} hei hautanga kotahi.
ax^{2}+bx+\frac{ab^{2}}{2^{2}a^{2}}=-c+\frac{ab^{2}}{\left(2a\right)^{2}}
Whakarohaina te \left(2a\right)^{2}.
ax^{2}+bx+\frac{ab^{2}}{4a^{2}}=-c+\frac{ab^{2}}{\left(2a\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
ax^{2}+bx+\frac{b^{2}}{4a}=-c+\frac{ab^{2}}{\left(2a\right)^{2}}
Me whakakore tahi te a i te taurunga me te tauraro.
ax^{2}+bx+\frac{b^{2}}{4a}=-c+\frac{ab^{2}}{2^{2}a^{2}}
Whakarohaina te \left(2a\right)^{2}.
ax^{2}+bx+\frac{b^{2}}{4a}=-c+\frac{ab^{2}}{4a^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
ax^{2}+bx+\frac{b^{2}}{4a}=-c+\frac{b^{2}}{4a}
Me whakakore tahi te a i te taurunga me te tauraro.
ax^{2}+bx+\frac{b^{2}}{4a}-\frac{b^{2}}{4a}=-c
Tangohia te \frac{b^{2}}{4a} mai i ngā taha e rua.
ax^{2}\times 4a+bx\times 4a+b^{2}-b^{2}=-4ac
Whakareatia ngā taha e rua o te whārite ki te 4a.
4aax^{2}+4abx+b^{2}-b^{2}=-4ac
Whakaraupapatia anō ngā kīanga tau.
4a^{2}x^{2}+4abx+b^{2}-b^{2}=-4ac
Whakareatia te a ki te a, ka a^{2}.
4a^{2}x^{2}+4abx=-4ac
Pahekotia te b^{2} me -b^{2}, ka 0.
4abx=-4ac-4a^{2}x^{2}
Tangohia te 4a^{2}x^{2} mai i ngā taha e rua.
4axb=-4a^{2}x^{2}-4ac
He hanga arowhānui tō te whārite.
\frac{4axb}{4ax}=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Whakawehea ngā taha e rua ki te 4ax.
b=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Mā te whakawehe ki te 4ax ka wetekia te whakareanga ki te 4ax.
b=-ax-\frac{c}{x}
Whakawehe -4a\left(c+ax^{2}\right) ki te 4ax.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}