Whakaoti mō x
x = \frac{2 \sqrt{2281} - 7}{55} \approx 1.609447845
x=\frac{-2\sqrt{2281}-7}{55}\approx -1.8639933
Graph
Tohaina
Kua tāruatia ki te papatopenga
11x^{2}+\frac{4}{5}\times 7\times \frac{x}{2}=33
Whakareatia ngā taha e rua o te whārite ki te 11.
11x^{2}+\frac{28}{5}\times \frac{x}{2}=33
Whakareatia te \frac{4}{5} ki te 7, ka \frac{28}{5}.
11x^{2}+\frac{28x}{5\times 2}=33
Me whakarea te \frac{28}{5} ki te \frac{x}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
11x^{2}+\frac{14x}{5}=33
Me whakakore tahi te 2 i te taurunga me te tauraro.
11x^{2}+\frac{14x}{5}-33=0
Tangohia te 33 mai i ngā taha e rua.
55x^{2}+14x-165=0
Whakareatia ngā taha e rua o te whārite ki te 5.
x=\frac{-14±\sqrt{14^{2}-4\times 55\left(-165\right)}}{2\times 55}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 55 mō a, 14 mō b, me -165 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 55\left(-165\right)}}{2\times 55}
Pūrua 14.
x=\frac{-14±\sqrt{196-220\left(-165\right)}}{2\times 55}
Whakareatia -4 ki te 55.
x=\frac{-14±\sqrt{196+36300}}{2\times 55}
Whakareatia -220 ki te -165.
x=\frac{-14±\sqrt{36496}}{2\times 55}
Tāpiri 196 ki te 36300.
x=\frac{-14±4\sqrt{2281}}{2\times 55}
Tuhia te pūtakerua o te 36496.
x=\frac{-14±4\sqrt{2281}}{110}
Whakareatia 2 ki te 55.
x=\frac{4\sqrt{2281}-14}{110}
Nā, me whakaoti te whārite x=\frac{-14±4\sqrt{2281}}{110} ina he tāpiri te ±. Tāpiri -14 ki te 4\sqrt{2281}.
x=\frac{2\sqrt{2281}-7}{55}
Whakawehe -14+4\sqrt{2281} ki te 110.
x=\frac{-4\sqrt{2281}-14}{110}
Nā, me whakaoti te whārite x=\frac{-14±4\sqrt{2281}}{110} ina he tango te ±. Tango 4\sqrt{2281} mai i -14.
x=\frac{-2\sqrt{2281}-7}{55}
Whakawehe -14-4\sqrt{2281} ki te 110.
x=\frac{2\sqrt{2281}-7}{55} x=\frac{-2\sqrt{2281}-7}{55}
Kua oti te whārite te whakatau.
11x^{2}+\frac{4}{5}\times 7\times \frac{x}{2}=33
Whakareatia ngā taha e rua o te whārite ki te 11.
11x^{2}+\frac{28}{5}\times \frac{x}{2}=33
Whakareatia te \frac{4}{5} ki te 7, ka \frac{28}{5}.
11x^{2}+\frac{28x}{5\times 2}=33
Me whakarea te \frac{28}{5} ki te \frac{x}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
11x^{2}+\frac{14x}{5}=33
Me whakakore tahi te 2 i te taurunga me te tauraro.
55x^{2}+14x=165
Whakareatia ngā taha e rua o te whārite ki te 5.
\frac{55x^{2}+14x}{55}=\frac{165}{55}
Whakawehea ngā taha e rua ki te 55.
x^{2}+\frac{14}{55}x=\frac{165}{55}
Mā te whakawehe ki te 55 ka wetekia te whakareanga ki te 55.
x^{2}+\frac{14}{55}x=3
Whakawehe 165 ki te 55.
x^{2}+\frac{14}{55}x+\left(\frac{7}{55}\right)^{2}=3+\left(\frac{7}{55}\right)^{2}
Whakawehea te \frac{14}{55}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{55}. Nā, tāpiria te pūrua o te \frac{7}{55} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{14}{55}x+\frac{49}{3025}=3+\frac{49}{3025}
Pūruatia \frac{7}{55} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{14}{55}x+\frac{49}{3025}=\frac{9124}{3025}
Tāpiri 3 ki te \frac{49}{3025}.
\left(x+\frac{7}{55}\right)^{2}=\frac{9124}{3025}
Tauwehea x^{2}+\frac{14}{55}x+\frac{49}{3025}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{55}\right)^{2}}=\sqrt{\frac{9124}{3025}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{55}=\frac{2\sqrt{2281}}{55} x+\frac{7}{55}=-\frac{2\sqrt{2281}}{55}
Whakarūnātia.
x=\frac{2\sqrt{2281}-7}{55} x=\frac{-2\sqrt{2281}-7}{55}
Me tango \frac{7}{55} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}