Whakaoti mō x
x = -\frac{664}{117} = -5\frac{79}{117} \approx -5.675213675
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
117x^{2}+9\times 16x+13\times 40x=0
Me whakarea ngā taha e rua o te whārite ki te 117, arā, te tauraro pātahi he tino iti rawa te kitea o 13,9.
117x^{2}+144x+13\times 40x=0
Whakareatia te 9 ki te 16, ka 144.
117x^{2}+144x+520x=0
Whakareatia te 13 ki te 40, ka 520.
117x^{2}+664x=0
Pahekotia te 144x me 520x, ka 664x.
x\left(117x+664\right)=0
Tauwehea te x.
x=0 x=-\frac{664}{117}
Hei kimi otinga whārite, me whakaoti te x=0 me te 117x+664=0.
117x^{2}+9\times 16x+13\times 40x=0
Me whakarea ngā taha e rua o te whārite ki te 117, arā, te tauraro pātahi he tino iti rawa te kitea o 13,9.
117x^{2}+144x+13\times 40x=0
Whakareatia te 9 ki te 16, ka 144.
117x^{2}+144x+520x=0
Whakareatia te 13 ki te 40, ka 520.
117x^{2}+664x=0
Pahekotia te 144x me 520x, ka 664x.
x=\frac{-664±\sqrt{664^{2}}}{2\times 117}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 117 mō a, 664 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-664±664}{2\times 117}
Tuhia te pūtakerua o te 664^{2}.
x=\frac{-664±664}{234}
Whakareatia 2 ki te 117.
x=\frac{0}{234}
Nā, me whakaoti te whārite x=\frac{-664±664}{234} ina he tāpiri te ±. Tāpiri -664 ki te 664.
x=0
Whakawehe 0 ki te 234.
x=-\frac{1328}{234}
Nā, me whakaoti te whārite x=\frac{-664±664}{234} ina he tango te ±. Tango 664 mai i -664.
x=-\frac{664}{117}
Whakahekea te hautanga \frac{-1328}{234} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=0 x=-\frac{664}{117}
Kua oti te whārite te whakatau.
117x^{2}+9\times 16x+13\times 40x=0
Me whakarea ngā taha e rua o te whārite ki te 117, arā, te tauraro pātahi he tino iti rawa te kitea o 13,9.
117x^{2}+144x+13\times 40x=0
Whakareatia te 9 ki te 16, ka 144.
117x^{2}+144x+520x=0
Whakareatia te 13 ki te 40, ka 520.
117x^{2}+664x=0
Pahekotia te 144x me 520x, ka 664x.
\frac{117x^{2}+664x}{117}=\frac{0}{117}
Whakawehea ngā taha e rua ki te 117.
x^{2}+\frac{664}{117}x=\frac{0}{117}
Mā te whakawehe ki te 117 ka wetekia te whakareanga ki te 117.
x^{2}+\frac{664}{117}x=0
Whakawehe 0 ki te 117.
x^{2}+\frac{664}{117}x+\left(\frac{332}{117}\right)^{2}=\left(\frac{332}{117}\right)^{2}
Whakawehea te \frac{664}{117}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{332}{117}. Nā, tāpiria te pūrua o te \frac{332}{117} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{664}{117}x+\frac{110224}{13689}=\frac{110224}{13689}
Pūruatia \frac{332}{117} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{332}{117}\right)^{2}=\frac{110224}{13689}
Tauwehea x^{2}+\frac{664}{117}x+\frac{110224}{13689}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{332}{117}\right)^{2}}=\sqrt{\frac{110224}{13689}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{332}{117}=\frac{332}{117} x+\frac{332}{117}=-\frac{332}{117}
Whakarūnātia.
x=0 x=-\frac{664}{117}
Me tango \frac{332}{117} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}