Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x^{6}-64\right)\left(x^{6}+64\right)
Tuhia anō te x^{12}-4096 hei \left(x^{6}\right)^{2}-64^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{3}-8\right)\left(x^{3}+8\right)
Whakaarohia te x^{6}-64. Tuhia anō te x^{6}-64 hei \left(x^{3}\right)^{2}-8^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-2\right)\left(x^{2}+2x+4\right)
Whakaarohia te x^{3}-8. Tuhia anō te x^{3}-8 hei x^{3}-2^{3}. Ka taea te rerekētanga o ngā pūtoru te whakatauwehe mā te whakamahi i te ture: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x+2\right)\left(x^{2}-2x+4\right)
Whakaarohia te x^{3}+8. Tuhia anō te x^{3}+8 hei x^{3}+2^{3}. Ka taea te tapeke pūtoru te whakatauwehe mā te whakamahi i te ture: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{2}+4\right)\left(x^{4}-4x^{2}+16\right)
Whakaarohia te x^{6}+64. Tuhia anō te x^{6}+64 hei \left(x^{2}\right)^{3}+4^{3}. Ka taea te tapeke pūtoru te whakatauwehe mā te whakamahi i te ture: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-2\right)\left(x+2\right)\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{2}+4\right)\left(x^{4}-4x^{2}+16\right)
Me tuhi anō te kīanga whakatauwehe katoa. Kāore i tauwehea ēnei pūrau i te mea kāhore ō rātou pūtake whakahau: x^{2}-2x+4,x^{2}+2x+4,x^{2}+4,x^{4}-4x^{2}+16.