Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

factor(x-16x^{2}+28)
Tātaihia te x mā te pū o 1, kia riro ko x.
-16x^{2}+x+28=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-16\right)\times 28}}{2\left(-16\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1-4\left(-16\right)\times 28}}{2\left(-16\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+64\times 28}}{2\left(-16\right)}
Whakareatia -4 ki te -16.
x=\frac{-1±\sqrt{1+1792}}{2\left(-16\right)}
Whakareatia 64 ki te 28.
x=\frac{-1±\sqrt{1793}}{2\left(-16\right)}
Tāpiri 1 ki te 1792.
x=\frac{-1±\sqrt{1793}}{-32}
Whakareatia 2 ki te -16.
x=\frac{\sqrt{1793}-1}{-32}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{1793}}{-32} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{1793}.
x=\frac{1-\sqrt{1793}}{32}
Whakawehe -1+\sqrt{1793} ki te -32.
x=\frac{-\sqrt{1793}-1}{-32}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{1793}}{-32} ina he tango te ±. Tango \sqrt{1793} mai i -1.
x=\frac{\sqrt{1793}+1}{32}
Whakawehe -1-\sqrt{1793} ki te -32.
-16x^{2}+x+28=-16\left(x-\frac{1-\sqrt{1793}}{32}\right)\left(x-\frac{\sqrt{1793}+1}{32}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1-\sqrt{1793}}{32} mō te x_{1} me te \frac{1+\sqrt{1793}}{32} mō te x_{2}.
x-16x^{2}+28
Tātaihia te x mā te pū o 1, kia riro ko x.