Whakaoti mō x_5
x_{5}=\frac{4x-2\sqrt{2}-29}{25}
x\neq 0\text{ and }x\neq -\frac{17}{4}
Whakaoti mō x (complex solution)
x=\frac{25x_{5}}{4}+\frac{\sqrt{2}}{2}+\frac{29}{4}
x_{5}\neq \frac{-2\sqrt{2}-29}{25}\text{ and }x_{5}\neq \frac{-2\sqrt{2}-46}{25}\text{ and }x_{5}\neq \frac{-2\sqrt{2}-29}{25}
Whakaoti mō x
x=\frac{25x_{5}}{4}+\frac{\sqrt{2}}{2}+\frac{29}{4}
x_{5}\neq \frac{-2\sqrt{2}-29}{25}\text{ and }x_{5}\neq \frac{-2\sqrt{2}-46}{25}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(4x+17\right)x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
Whakareatia ngā taha e rua o te whārite ki te 4x+17.
4xx^{0}+17x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
Whakamahia te āhuatanga tohatoha hei whakarea te 4x+17 ki te x^{0}.
4x^{1}+17x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 0 kia riro ai te 1.
4x+17x^{0}=30+4^{2}+1\sqrt{8}+5^{2}x_{5}
Tātaihia te x mā te pū o 1, kia riro ko x.
4x+17x^{0}=30+16+1\sqrt{8}+5^{2}x_{5}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
4x+17x^{0}=46+1\sqrt{8}+5^{2}x_{5}
Tāpirihia te 30 ki te 16, ka 46.
4x+17x^{0}=46+1\times 2\sqrt{2}+5^{2}x_{5}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
4x+17x^{0}=46+2\sqrt{2}+5^{2}x_{5}
Whakareatia te 1 ki te 2, ka 2.
4x+17x^{0}=46+2\sqrt{2}+25x_{5}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
46+2\sqrt{2}+25x_{5}=4x+17x^{0}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2\sqrt{2}+25x_{5}=4x+17x^{0}-46
Tangohia te 46 mai i ngā taha e rua.
25x_{5}=4x+17x^{0}-46-2\sqrt{2}
Tangohia te 2\sqrt{2} mai i ngā taha e rua.
25x_{5}=4x-2\sqrt{2}-29
He hanga arowhānui tō te whārite.
\frac{25x_{5}}{25}=\frac{4x-2\sqrt{2}-29}{25}
Whakawehea ngā taha e rua ki te 25.
x_{5}=\frac{4x-2\sqrt{2}-29}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}