Kimi Pārōnaki e ai ki x
5x^{4}
Aromātai
x^{5}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{-6}\frac{\mathrm{d}}{\mathrm{d}x}(x^{11})+x^{11}\frac{\mathrm{d}}{\mathrm{d}x}(x^{-6})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
x^{-6}\times 11x^{11-1}+x^{11}\left(-6\right)x^{-6-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
x^{-6}\times 11x^{10}+x^{11}\left(-6\right)x^{-7}
Whakarūnātia.
11x^{-6+10}-6x^{11-7}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
11x^{4}-6x^{4}
Whakarūnātia.
x^{5}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -6 me te 11 kia riro ai te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}