Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{-3}=\frac{1^{3}}{x^{3}}
Kia whakarewa i te \frac{1}{x} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
x^{-3}=\frac{1}{x^{3}}
Tātaihia te 1 mā te pū o 3, kia riro ko 1.
x^{-3}-\frac{1}{x^{3}}=0
Tangohia te \frac{1}{x^{3}} mai i ngā taha e rua.
\frac{x^{-3}x^{3}}{x^{3}}-\frac{1}{x^{3}}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{-3} ki te \frac{x^{3}}{x^{3}}.
\frac{x^{-3}x^{3}-1}{x^{3}}=0
Tā te mea he rite te tauraro o \frac{x^{-3}x^{3}}{x^{3}} me \frac{1}{x^{3}}, me tango rāua mā te tango i ō raua taurunga.
\frac{1-1}{x^{3}}=0
Mahia ngā whakarea i roto o x^{-3}x^{3}-1.
\frac{0}{x^{3}}=0
Mahia ngā tātaitai i roto o 1-1.
0=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{3}.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.
x\in \mathrm{R}\setminus 0
Tē taea kia ōrite te tāupe x ki 0.