Whakaoti mō x
x\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{-3}=\frac{1^{3}}{x^{3}}
Kia whakarewa i te \frac{1}{x} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
x^{-3}=\frac{1}{x^{3}}
Tātaihia te 1 mā te pū o 3, kia riro ko 1.
x^{-3}-\frac{1}{x^{3}}=0
Tangohia te \frac{1}{x^{3}} mai i ngā taha e rua.
\frac{x^{-3}x^{3}}{x^{3}}-\frac{1}{x^{3}}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{-3} ki te \frac{x^{3}}{x^{3}}.
\frac{x^{-3}x^{3}-1}{x^{3}}=0
Tā te mea he rite te tauraro o \frac{x^{-3}x^{3}}{x^{3}} me \frac{1}{x^{3}}, me tango rāua mā te tango i ō raua taurunga.
\frac{1-1}{x^{3}}=0
Mahia ngā whakarea i roto o x^{-3}x^{3}-1.
\frac{0}{x^{3}}=0
Mahia ngā tātaitai i roto o 1-1.
0=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{3}.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.
x\in \mathrm{R}\setminus 0
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}