Whakaoti mō x
x=-10
x=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
1+\frac{1}{x}-90x^{-2}=0
Whakaraupapatia anō ngā kīanga tau.
x+1-90x^{-2}x=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x+1-90x^{-1}=0
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -2 me te 1 kia riro ai te -1.
x+1-90\times \frac{1}{x}=0
Whakaraupapatia anō ngā kīanga tau.
xx+x-90=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}+x-90=0
Whakareatia te x ki te x, ka x^{2}.
a+b=1 ab=-90
Hei whakaoti i te whārite, whakatauwehea te x^{2}+x-90 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Tātaihia te tapeke mō ia takirua.
a=-9 b=10
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(x-9\right)\left(x+10\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=9 x=-10
Hei kimi otinga whārite, me whakaoti te x-9=0 me te x+10=0.
1+\frac{1}{x}-90x^{-2}=0
Whakaraupapatia anō ngā kīanga tau.
x+1-90x^{-2}x=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x+1-90x^{-1}=0
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -2 me te 1 kia riro ai te -1.
x+1-90\times \frac{1}{x}=0
Whakaraupapatia anō ngā kīanga tau.
xx+x-90=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}+x-90=0
Whakareatia te x ki te x, ka x^{2}.
a+b=1 ab=1\left(-90\right)=-90
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-90. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Tātaihia te tapeke mō ia takirua.
a=-9 b=10
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(x^{2}-9x\right)+\left(10x-90\right)
Tuhia anō te x^{2}+x-90 hei \left(x^{2}-9x\right)+\left(10x-90\right).
x\left(x-9\right)+10\left(x-9\right)
Tauwehea te x i te tuatahi me te 10 i te rōpū tuarua.
\left(x-9\right)\left(x+10\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=9 x=-10
Hei kimi otinga whārite, me whakaoti te x-9=0 me te x+10=0.
1+\frac{1}{x}-90x^{-2}=0
Whakaraupapatia anō ngā kīanga tau.
x+1-90x^{-2}x=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x+1-90x^{-1}=0
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -2 me te 1 kia riro ai te -1.
x+1-90\times \frac{1}{x}=0
Whakaraupapatia anō ngā kīanga tau.
xx+x-90=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}+x-90=0
Whakareatia te x ki te x, ka x^{2}.
x=\frac{-1±\sqrt{1^{2}-4\left(-90\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 1 mō b, me -90 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-90\right)}}{2}
Pūrua 1.
x=\frac{-1±\sqrt{1+360}}{2}
Whakareatia -4 ki te -90.
x=\frac{-1±\sqrt{361}}{2}
Tāpiri 1 ki te 360.
x=\frac{-1±19}{2}
Tuhia te pūtakerua o te 361.
x=\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{-1±19}{2} ina he tāpiri te ±. Tāpiri -1 ki te 19.
x=9
Whakawehe 18 ki te 2.
x=-\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{-1±19}{2} ina he tango te ±. Tango 19 mai i -1.
x=-10
Whakawehe -20 ki te 2.
x=9 x=-10
Kua oti te whārite te whakatau.
x^{-1}-90x^{-2}=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{1}{x}-90x^{-2}=-1
Whakaraupapatia anō ngā kīanga tau.
1-90x^{-2}x=-x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
1-90x^{-1}=-x
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -2 me te 1 kia riro ai te -1.
1-90x^{-1}+x=0
Me tāpiri te x ki ngā taha e rua.
-90x^{-1}+x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x-90\times \frac{1}{x}=-1
Whakaraupapatia anō ngā kīanga tau.
xx-90=-x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}-90=-x
Whakareatia te x ki te x, ka x^{2}.
x^{2}-90+x=0
Me tāpiri te x ki ngā taha e rua.
x^{2}+x=90
Me tāpiri te 90 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=90+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=90+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{361}{4}
Tāpiri 90 ki te \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{361}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{19}{2} x+\frac{1}{2}=-\frac{19}{2}
Whakarūnātia.
x=9 x=-10
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}