Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō b (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō b
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=\left(x^{2}-xa\right)\left(x-b\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-a.
x=x^{3}-x^{2}b-ax^{2}+axb
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-xa ki te x-b.
x^{3}-x^{2}b-ax^{2}+axb=x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}b-ax^{2}+axb=x-x^{3}
Tangohia te x^{3} mai i ngā taha e rua.
-ax^{2}+axb=x-x^{3}+x^{2}b
Me tāpiri te x^{2}b ki ngā taha e rua.
\left(-x^{2}+xb\right)a=x-x^{3}+x^{2}b
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(bx-x^{2}\right)a=x+bx^{2}-x^{3}
He hanga arowhānui tō te whārite.
\frac{\left(bx-x^{2}\right)a}{bx-x^{2}}=\frac{x\left(1+bx-x^{2}\right)}{bx-x^{2}}
Whakawehea ngā taha e rua ki te -x^{2}+xb.
a=\frac{x\left(1+bx-x^{2}\right)}{bx-x^{2}}
Mā te whakawehe ki te -x^{2}+xb ka wetekia te whakareanga ki te -x^{2}+xb.
a=\frac{1+bx-x^{2}}{b-x}
Whakawehe x\left(1-x^{2}+xb\right) ki te -x^{2}+xb.
x=\left(x^{2}-xa\right)\left(x-b\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-a.
x=x^{3}-x^{2}b-ax^{2}+xba
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-xa ki te x-b.
x^{3}-x^{2}b-ax^{2}+xba=x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}b-ax^{2}+xba=x-x^{3}
Tangohia te x^{3} mai i ngā taha e rua.
-x^{2}b+xba=x-x^{3}+ax^{2}
Me tāpiri te ax^{2} ki ngā taha e rua.
\left(-x^{2}+xa\right)b=x-x^{3}+ax^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(ax-x^{2}\right)b=x+ax^{2}-x^{3}
He hanga arowhānui tō te whārite.
\frac{\left(ax-x^{2}\right)b}{ax-x^{2}}=\frac{x\left(1+ax-x^{2}\right)}{ax-x^{2}}
Whakawehea ngā taha e rua ki te -x^{2}+xa.
b=\frac{x\left(1+ax-x^{2}\right)}{ax-x^{2}}
Mā te whakawehe ki te -x^{2}+xa ka wetekia te whakareanga ki te -x^{2}+xa.
b=\frac{1+ax-x^{2}}{a-x}
Whakawehe x\left(1-x^{2}+ax\right) ki te -x^{2}+xa.
x=\left(x^{2}-xa\right)\left(x-b\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-a.
x=x^{3}-x^{2}b-ax^{2}+axb
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-xa ki te x-b.
x^{3}-x^{2}b-ax^{2}+axb=x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}b-ax^{2}+axb=x-x^{3}
Tangohia te x^{3} mai i ngā taha e rua.
-ax^{2}+axb=x-x^{3}+x^{2}b
Me tāpiri te x^{2}b ki ngā taha e rua.
\left(-x^{2}+xb\right)a=x-x^{3}+x^{2}b
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(bx-x^{2}\right)a=x+bx^{2}-x^{3}
He hanga arowhānui tō te whārite.
\frac{\left(bx-x^{2}\right)a}{bx-x^{2}}=\frac{x\left(1+bx-x^{2}\right)}{bx-x^{2}}
Whakawehea ngā taha e rua ki te -x^{2}+xb.
a=\frac{x\left(1+bx-x^{2}\right)}{bx-x^{2}}
Mā te whakawehe ki te -x^{2}+xb ka wetekia te whakareanga ki te -x^{2}+xb.
a=\frac{1+bx-x^{2}}{b-x}
Whakawehe x\left(1-x^{2}+xb\right) ki te -x^{2}+xb.
x=\left(x^{2}-xa\right)\left(x-b\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-a.
x=x^{3}-x^{2}b-ax^{2}+xba
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-xa ki te x-b.
x^{3}-x^{2}b-ax^{2}+xba=x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}b-ax^{2}+xba=x-x^{3}
Tangohia te x^{3} mai i ngā taha e rua.
-x^{2}b+xba=x-x^{3}+ax^{2}
Me tāpiri te ax^{2} ki ngā taha e rua.
\left(-x^{2}+xa\right)b=x-x^{3}+ax^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(ax-x^{2}\right)b=x+ax^{2}-x^{3}
He hanga arowhānui tō te whārite.
\frac{\left(ax-x^{2}\right)b}{ax-x^{2}}=\frac{x\left(1+ax-x^{2}\right)}{ax-x^{2}}
Whakawehea ngā taha e rua ki te -x^{2}+xa.
b=\frac{x\left(1+ax-x^{2}\right)}{ax-x^{2}}
Mā te whakawehe ki te -x^{2}+xa ka wetekia te whakareanga ki te -x^{2}+xa.
b=\frac{1+ax-x^{2}}{a-x}
Whakawehe x\left(1-x^{2}+ax\right) ki te -x^{2}+xa.