Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-x^{2}=-30
Tangohia te x^{2} mai i ngā taha e rua.
x-x^{2}+30=0
Me tāpiri te 30 ki ngā taha e rua.
-x^{2}+x+30=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=1 ab=-30=-30
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+30. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,30 -2,15 -3,10 -5,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Tātaihia te tapeke mō ia takirua.
a=6 b=-5
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(-x^{2}+6x\right)+\left(-5x+30\right)
Tuhia anō te -x^{2}+x+30 hei \left(-x^{2}+6x\right)+\left(-5x+30\right).
-x\left(x-6\right)-5\left(x-6\right)
Tauwehea te -x i te tuatahi me te -5 i te rōpū tuarua.
\left(x-6\right)\left(-x-5\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=-5
Hei kimi otinga whārite, me whakaoti te x-6=0 me te -x-5=0.
x-x^{2}=-30
Tangohia te x^{2} mai i ngā taha e rua.
x-x^{2}+30=0
Me tāpiri te 30 ki ngā taha e rua.
-x^{2}+x+30=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 30}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me 30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 30}}{2\left(-1\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+4\times 30}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-1±\sqrt{1+120}}{2\left(-1\right)}
Whakareatia 4 ki te 30.
x=\frac{-1±\sqrt{121}}{2\left(-1\right)}
Tāpiri 1 ki te 120.
x=\frac{-1±11}{2\left(-1\right)}
Tuhia te pūtakerua o te 121.
x=\frac{-1±11}{-2}
Whakareatia 2 ki te -1.
x=\frac{10}{-2}
Nā, me whakaoti te whārite x=\frac{-1±11}{-2} ina he tāpiri te ±. Tāpiri -1 ki te 11.
x=-5
Whakawehe 10 ki te -2.
x=-\frac{12}{-2}
Nā, me whakaoti te whārite x=\frac{-1±11}{-2} ina he tango te ±. Tango 11 mai i -1.
x=6
Whakawehe -12 ki te -2.
x=-5 x=6
Kua oti te whārite te whakatau.
x-x^{2}=-30
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+x=-30
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+x}{-1}=-\frac{30}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{1}{-1}x=-\frac{30}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-x=-\frac{30}{-1}
Whakawehe 1 ki te -1.
x^{2}-x=30
Whakawehe -30 ki te -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=30+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=30+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{121}{4}
Tāpiri 30 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{121}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{11}{2} x-\frac{1}{2}=-\frac{11}{2}
Whakarūnātia.
x=6 x=-5
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.