Whakaoti mō x
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=4\times \frac{1}{3}x+4\times \frac{2}{3}-5
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te \frac{1}{3}x+\frac{2}{3}.
x=\frac{4}{3}x+4\times \frac{2}{3}-5
Whakareatia te 4 ki te \frac{1}{3}, ka \frac{4}{3}.
x=\frac{4}{3}x+\frac{4\times 2}{3}-5
Tuhia te 4\times \frac{2}{3} hei hautanga kotahi.
x=\frac{4}{3}x+\frac{8}{3}-5
Whakareatia te 4 ki te 2, ka 8.
x=\frac{4}{3}x+\frac{8}{3}-\frac{15}{3}
Me tahuri te 5 ki te hautau \frac{15}{3}.
x=\frac{4}{3}x+\frac{8-15}{3}
Tā te mea he rite te tauraro o \frac{8}{3} me \frac{15}{3}, me tango rāua mā te tango i ō raua taurunga.
x=\frac{4}{3}x-\frac{7}{3}
Tangohia te 15 i te 8, ka -7.
x-\frac{4}{3}x=-\frac{7}{3}
Tangohia te \frac{4}{3}x mai i ngā taha e rua.
-\frac{1}{3}x=-\frac{7}{3}
Pahekotia te x me -\frac{4}{3}x, ka -\frac{1}{3}x.
x=-\frac{7}{3}\left(-3\right)
Me whakarea ngā taha e rua ki te -3, te tau utu o -\frac{1}{3}.
x=\frac{-7\left(-3\right)}{3}
Tuhia te -\frac{7}{3}\left(-3\right) hei hautanga kotahi.
x=\frac{21}{3}
Whakareatia te -7 ki te -3, ka 21.
x=7
Whakawehea te 21 ki te 3, kia riro ko 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}