Whakaoti mō x
x=9
x=0
Graph
Pātaitai
Algebra
x = 3 \sqrt { x }
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=\left(3\sqrt{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=3^{2}\left(\sqrt{x}\right)^{2}
Whakarohaina te \left(3\sqrt{x}\right)^{2}.
x^{2}=9\left(\sqrt{x}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
x^{2}=9x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x^{2}-9x=0
Tangohia te 9x mai i ngā taha e rua.
x\left(x-9\right)=0
Tauwehea te x.
x=0 x=9
Hei kimi otinga whārite, me whakaoti te x=0 me te x-9=0.
0=3\sqrt{0}
Whakakapia te 0 mō te x i te whārite x=3\sqrt{x}.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
9=3\sqrt{9}
Whakakapia te 9 mō te x i te whārite x=3\sqrt{x}.
9=9
Whakarūnātia. Ko te uara x=9 kua ngata te whārite.
x=0 x=9
Rārangihia ngā rongoā katoa o x=3\sqrt{x}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}