Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=\left(\sqrt{x}\times \frac{x+x}{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=\left(\sqrt{x}\times \frac{2x}{x}\right)^{2}
Pahekotia te x me x, ka 2x.
x^{2}=\left(\sqrt{x}\times 2\right)^{2}
Me whakakore tahi te x i te taurunga me te tauraro.
x^{2}=\left(\sqrt{x}\right)^{2}\times 2^{2}
Whakarohaina te \left(\sqrt{x}\times 2\right)^{2}.
x^{2}=x\times 2^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x^{2}=x\times 4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x^{2}-x\times 4=0
Tangohia te x\times 4 mai i ngā taha e rua.
x^{2}-4x=0
Whakareatia te -1 ki te 4, ka -4.
x\left(x-4\right)=0
Tauwehea te x.
x=0 x=4
Hei kimi otinga whārite, me whakaoti te x=0 me te x-4=0.
0=\sqrt{0}\times \frac{0+0}{0}
Whakakapia te 0 mō te x i te whārite x=\sqrt{x}\times \frac{x+x}{x}. Kāore e tautuhia e te kīanga.
4=\sqrt{4}\times \frac{4+4}{4}
Whakakapia te 4 mō te x i te whārite x=\sqrt{x}\times \frac{x+x}{x}.
4=4
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=4
Ko te whārite x=\frac{x+x}{x}\sqrt{x} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}