Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Tohaina

x^{2}=\left(\sqrt{x}\times \frac{x+x}{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=\left(\sqrt{x}\times \frac{2x}{x}\right)^{2}
Pahekotia te x me x, ka 2x.
x^{2}=\left(\sqrt{x}\times 2\right)^{2}
Me whakakore tahi te x i te taurunga me te tauraro.
x^{2}=\left(\sqrt{x}\right)^{2}\times 2^{2}
Whakarohaina te \left(\sqrt{x}\times 2\right)^{2}.
x^{2}=x\times 2^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x^{2}=x\times 4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x^{2}-x\times 4=0
Tangohia te x\times 4 mai i ngā taha e rua.
x^{2}-4x=0
Whakareatia te -1 ki te 4, ka -4.
x\left(x-4\right)=0
Tauwehea te x.
x=0 x=4
Hei kimi otinga whārite, me whakaoti te x=0 me te x-4=0.
0=\sqrt{0}\times \frac{0+0}{0}
Whakakapia te 0 mō te x i te whārite x=\sqrt{x}\times \frac{x+x}{x}. Kāore e tautuhia e te kīanga.
4=\sqrt{4}\times \frac{4+4}{4}
Whakakapia te 4 mō te x i te whārite x=\sqrt{x}\times \frac{x+x}{x}.
4=4
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=4
Ko te whārite x=\frac{x+x}{x}\sqrt{x} he rongoā ahurei.