Whakaoti mō x (complex solution)
x=\frac{-\sqrt{3}i-1}{2}\approx -0.5-0.866025404i
x=1
Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=\left(\sqrt{x}\times \frac{1}{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=\left(\frac{\sqrt{x}}{x}\right)^{2}
Tuhia te \sqrt{x}\times \frac{1}{x} hei hautanga kotahi.
x^{2}=\frac{\left(\sqrt{x}\right)^{2}}{x^{2}}
Kia whakarewa i te \frac{\sqrt{x}}{x} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
x^{2}=\frac{x}{x^{2}}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x^{2}=\frac{1}{x}
Me whakakore tahi te x i te taurunga me te tauraro.
xx^{2}=1
Whakareatia ngā taha e rua o te whārite ki te x.
x^{3}=1
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
x^{3}-1=0
Tangohia te 1 mai i ngā taha e rua.
±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-1 ki te x-1, kia riro ko x^{2}+x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 1 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{-1±\sqrt{-3}}{2}
Mahia ngā tātaitai.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Whakaotia te whārite x^{2}+x+1=0 ina he tōrunga te ±, ina he tōraro te ±.
x=1 x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Rārangitia ngā otinga katoa i kitea.
1=\sqrt{1}\times \frac{1}{1}
Whakakapia te 1 mō te x i te whārite x=\sqrt{x}\times \frac{1}{x}.
1=1
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
\frac{-\sqrt{3}i-1}{2}=\sqrt{\frac{-\sqrt{3}i-1}{2}}\times \frac{1}{\frac{-\sqrt{3}i-1}{2}}
Whakakapia te \frac{-\sqrt{3}i-1}{2} mō te x i te whārite x=\sqrt{x}\times \frac{1}{x}.
-\frac{1}{2}i\times 3^{\frac{1}{2}}-\frac{1}{2}=-\frac{1}{2}-\frac{1}{2}i\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{-\sqrt{3}i-1}{2} kua ngata te whārite.
\frac{-1+\sqrt{3}i}{2}=\sqrt{\frac{-1+\sqrt{3}i}{2}}\times \frac{1}{\frac{-1+\sqrt{3}i}{2}}
Whakakapia te \frac{-1+\sqrt{3}i}{2} mō te x i te whārite x=\sqrt{x}\times \frac{1}{x}.
-\frac{1}{2}+\frac{1}{2}i\times 3^{\frac{1}{2}}=\frac{1}{2}-\frac{1}{2}i\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{-1+\sqrt{3}i}{2} kāore e ngata ana ki te whārite.
x=1 x=\frac{-\sqrt{3}i-1}{2}
Rārangihia ngā rongoā katoa o x=\frac{1}{x}\sqrt{x}.
x^{2}=\left(\sqrt{x}\times \frac{1}{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=\left(\frac{\sqrt{x}}{x}\right)^{2}
Tuhia te \sqrt{x}\times \frac{1}{x} hei hautanga kotahi.
x^{2}=\frac{\left(\sqrt{x}\right)^{2}}{x^{2}}
Kia whakarewa i te \frac{\sqrt{x}}{x} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
x^{2}=\frac{x}{x^{2}}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x^{2}=\frac{1}{x}
Me whakakore tahi te x i te taurunga me te tauraro.
xx^{2}=1
Whakareatia ngā taha e rua o te whārite ki te x.
x^{3}=1
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
x^{3}-1=0
Tangohia te 1 mai i ngā taha e rua.
±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-1 ki te x-1, kia riro ko x^{2}+x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 1 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{-1±\sqrt{-3}}{2}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=1
Rārangitia ngā otinga katoa i kitea.
1=\sqrt{1}\times \frac{1}{1}
Whakakapia te 1 mō te x i te whārite x=\sqrt{x}\times \frac{1}{x}.
1=1
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
x=1
Ko te whārite x=\frac{1}{x}\sqrt{x} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}