Whakaoti mō x
x=\sqrt{2}\approx 1.414213562
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=\left(\sqrt{4-x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=4-x^{2}
Tātaihia te \sqrt{4-x^{2}} mā te pū o 2, kia riro ko 4-x^{2}.
x^{2}+x^{2}=4
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}=4
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
x^{2}=\frac{4}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=2
Whakawehea te 4 ki te 2, kia riro ko 2.
x=\sqrt{2} x=-\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\sqrt{2}=\sqrt{4-\left(\sqrt{2}\right)^{2}}
Whakakapia te \sqrt{2} mō te x i te whārite x=\sqrt{4-x^{2}}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\sqrt{2} kua ngata te whārite.
-\sqrt{2}=\sqrt{4-\left(-\sqrt{2}\right)^{2}}
Whakakapia te -\sqrt{2} mō te x i te whārite x=\sqrt{4-x^{2}}.
-2^{\frac{1}{2}}=2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=-\sqrt{2} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=\sqrt{2}
Ko te whārite x=\sqrt{4-x^{2}} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}