Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\left(\sqrt{4-x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=4-x^{2}
Tātaihia te \sqrt{4-x^{2}} mā te pū o 2, kia riro ko 4-x^{2}.
x^{2}+x^{2}=4
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}=4
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
x^{2}=\frac{4}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=2
Whakawehea te 4 ki te 2, kia riro ko 2.
x=\sqrt{2} x=-\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\sqrt{2}=\sqrt{4-\left(\sqrt{2}\right)^{2}}
Whakakapia te \sqrt{2} mō te x i te whārite x=\sqrt{4-x^{2}}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\sqrt{2} kua ngata te whārite.
-\sqrt{2}=\sqrt{4-\left(-\sqrt{2}\right)^{2}}
Whakakapia te -\sqrt{2} mō te x i te whārite x=\sqrt{4-x^{2}}.
-2^{\frac{1}{2}}=2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=-\sqrt{2} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=\sqrt{2}
Ko te whārite x=\sqrt{4-x^{2}} he rongoā ahurei.