Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō y (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{3y-\frac{1}{2}}=x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3y-\frac{1}{2}=x^{2}
Pūruatia ngā taha e rua o te whārite.
3y-\frac{1}{2}-\left(-\frac{1}{2}\right)=x^{2}-\left(-\frac{1}{2}\right)
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
3y=x^{2}-\left(-\frac{1}{2}\right)
Mā te tango i te -\frac{1}{2} i a ia ake anō ka toe ko te 0.
3y=x^{2}+\frac{1}{2}
Tango -\frac{1}{2} mai i x^{2}.
\frac{3y}{3}=\frac{x^{2}+\frac{1}{2}}{3}
Whakawehea ngā taha e rua ki te 3.
y=\frac{x^{2}+\frac{1}{2}}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y=\frac{x^{2}}{3}+\frac{1}{6}
Whakawehe x^{2}+\frac{1}{2} ki te 3.