Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\left(\sqrt{2x-1}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=2x-1
Tātaihia te \sqrt{2x-1} mā te pū o 2, kia riro ko 2x-1.
x^{2}-2x=-1
Tangohia te 2x mai i ngā taha e rua.
x^{2}-2x+1=0
Me tāpiri te 1 ki ngā taha e rua.
a+b=-2 ab=1
Hei whakaoti i te whārite, whakatauwehea te x^{2}-2x+1 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-1\right)\left(x-1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
\left(x-1\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=1
Hei kimi i te otinga whārite, whakaotia te x-1=0.
1=\sqrt{2\times 1-1}
Whakakapia te 1 mō te x i te whārite x=\sqrt{2x-1}.
1=1
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
x=1
Ko te whārite x=\sqrt{2x-1} he rongoā ahurei.