Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=\left(\sqrt{2x-1}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=2x-1
Tātaihia te \sqrt{2x-1} mā te pū o 2, kia riro ko 2x-1.
x^{2}-2x=-1
Tangohia te 2x mai i ngā taha e rua.
x^{2}-2x+1=0
Me tāpiri te 1 ki ngā taha e rua.
a+b=-2 ab=1
Hei whakaoti i te whārite, whakatauwehea te x^{2}-2x+1 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-1\right)\left(x-1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
\left(x-1\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=1
Hei kimi i te otinga whārite, whakaotia te x-1=0.
1=\sqrt{2\times 1-1}
Whakakapia te 1 mō te x i te whārite x=\sqrt{2x-1}.
1=1
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
x=1
Ko te whārite x=\sqrt{2x-1} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}