Whakaoti mō x
x=6
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=\left(\sqrt{11x-30}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=11x-30
Tātaihia te \sqrt{11x-30} mā te pū o 2, kia riro ko 11x-30.
x^{2}-11x=-30
Tangohia te 11x mai i ngā taha e rua.
x^{2}-11x+30=0
Me tāpiri te 30 ki ngā taha e rua.
a+b=-11 ab=30
Hei whakaoti i te whārite, whakatauwehea te x^{2}-11x+30 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-30 -2,-15 -3,-10 -5,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Tātaihia te tapeke mō ia takirua.
a=-6 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(x-6\right)\left(x-5\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=6 x=5
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x-5=0.
6=\sqrt{11\times 6-30}
Whakakapia te 6 mō te x i te whārite x=\sqrt{11x-30}.
6=6
Whakarūnātia. Ko te uara x=6 kua ngata te whārite.
5=\sqrt{11\times 5-30}
Whakakapia te 5 mō te x i te whārite x=\sqrt{11x-30}.
5=5
Whakarūnātia. Ko te uara x=5 kua ngata te whārite.
x=6 x=5
Rārangihia ngā rongoā katoa o x=\sqrt{11x-30}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}