Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\left(\sqrt{-3x+40}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}=-3x+40
Tātaihia te \sqrt{-3x+40} mā te pū o 2, kia riro ko -3x+40.
x^{2}+3x=40
Me tāpiri te 3x ki ngā taha e rua.
x^{2}+3x-40=0
Tangohia te 40 mai i ngā taha e rua.
a+b=3 ab=-40
Hei whakaoti i te whārite, whakatauwehea te x^{2}+3x-40 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,40 -2,20 -4,10 -5,8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -40.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
Tātaihia te tapeke mō ia takirua.
a=-5 b=8
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(x-5\right)\left(x+8\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=5 x=-8
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+8=0.
5=\sqrt{-3\times 5+40}
Whakakapia te 5 mō te x i te whārite x=\sqrt{-3x+40}.
5=5
Whakarūnātia. Ko te uara x=5 kua ngata te whārite.
-8=\sqrt{-3\left(-8\right)+40}
Whakakapia te -8 mō te x i te whārite x=\sqrt{-3x+40}.
-8=8
Whakarūnātia. Ko te uara x=-8 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=5
Ko te whārite x=\sqrt{40-3x} he rongoā ahurei.