Whakaoti mō n
n=60x-16.5
Whakaoti mō x
x=\frac{n}{60}+0.275
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=\frac{1}{60}n+0.275
Whakawehea ia wā o 0.4n+6.6 ki te 24, kia riro ko \frac{1}{60}n+0.275.
\frac{1}{60}n+0.275=x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{60}n=x-0.275
Tangohia te 0.275 mai i ngā taha e rua.
\frac{\frac{1}{60}n}{\frac{1}{60}}=\frac{x-0.275}{\frac{1}{60}}
Me whakarea ngā taha e rua ki te 60.
n=\frac{x-0.275}{\frac{1}{60}}
Mā te whakawehe ki te \frac{1}{60} ka wetekia te whakareanga ki te \frac{1}{60}.
n=60x-16.5
Whakawehe x-0.275 ki te \frac{1}{60} mā te whakarea x-0.275 ki te tau huripoki o \frac{1}{60}.
x=\frac{1}{60}n+0.275
Whakawehea ia wā o 0.4n+6.6 ki te 24, kia riro ko \frac{1}{60}n+0.275.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}