Whakaoti mō x
x = \frac{2 {(\sqrt{13} - 2)}}{3} \approx 1.070367517
Tautapa x
x≔\frac{2\left(\sqrt{13}-2\right)}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=\frac{-4+2\sqrt{13}}{3}
Tauwehea te 52=2^{2}\times 13. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 13} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{13}. Tuhia te pūtakerua o te 2^{2}.
x=-\frac{4}{3}+\frac{2}{3}\sqrt{13}
Whakawehea ia wā o -4+2\sqrt{13} ki te 3, kia riro ko -\frac{4}{3}+\frac{2}{3}\sqrt{13}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}