Whakaoti mō x
x = \frac{4 \sqrt{314} + 6}{31} \approx 2.480005825
Tautapa x
x≔\frac{4\sqrt{314}+6}{31}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=\frac{2\sqrt{314}+8943^{0}+\frac{3125}{5^{5}}+\sqrt{1}}{15-2^{-1}+\left(-1\right)^{2058}}
Tauwehea te 1256=2^{2}\times 314. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 314} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{314}. Tuhia te pūtakerua o te 2^{2}.
x=\frac{2\sqrt{314}+1+\frac{3125}{5^{5}}+\sqrt{1}}{15-2^{-1}+\left(-1\right)^{2058}}
Tātaihia te 8943 mā te pū o 0, kia riro ko 1.
x=\frac{2\sqrt{314}+1+\frac{3125}{3125}+\sqrt{1}}{15-2^{-1}+\left(-1\right)^{2058}}
Tātaihia te 5 mā te pū o 5, kia riro ko 3125.
x=\frac{2\sqrt{314}+1+1+\sqrt{1}}{15-2^{-1}+\left(-1\right)^{2058}}
Whakawehea te 3125 ki te 3125, kia riro ko 1.
x=\frac{2\sqrt{314}+2+\sqrt{1}}{15-2^{-1}+\left(-1\right)^{2058}}
Tāpirihia te 1 ki te 1, ka 2.
x=\frac{2\sqrt{314}+2+1}{15-2^{-1}+\left(-1\right)^{2058}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
x=\frac{2\sqrt{314}+3}{15-2^{-1}+\left(-1\right)^{2058}}
Tāpirihia te 2 ki te 1, ka 3.
x=\frac{2\sqrt{314}+3}{15-\frac{1}{2}+\left(-1\right)^{2058}}
Tātaihia te 2 mā te pū o -1, kia riro ko \frac{1}{2}.
x=\frac{2\sqrt{314}+3}{\frac{29}{2}+\left(-1\right)^{2058}}
Tangohia te \frac{1}{2} i te 15, ka \frac{29}{2}.
x=\frac{2\sqrt{314}+3}{\frac{29}{2}+1}
Tātaihia te -1 mā te pū o 2058, kia riro ko 1.
x=\frac{2\sqrt{314}+3}{\frac{31}{2}}
Tāpirihia te \frac{29}{2} ki te 1, ka \frac{31}{2}.
x=\frac{2\sqrt{314}}{\frac{31}{2}}+\frac{3}{\frac{31}{2}}
Whakawehea ia wā o 2\sqrt{314}+3 ki te \frac{31}{2}, kia riro ko \frac{2\sqrt{314}}{\frac{31}{2}}+\frac{3}{\frac{31}{2}}.
x=\frac{4}{31}\sqrt{314}+\frac{3}{\frac{31}{2}}
Whakawehea te 2\sqrt{314} ki te \frac{31}{2}, kia riro ko \frac{4}{31}\sqrt{314}.
x=\frac{4}{31}\sqrt{314}+3\times \frac{2}{31}
Whakawehe 3 ki te \frac{31}{2} mā te whakarea 3 ki te tau huripoki o \frac{31}{2}.
x=\frac{4}{31}\sqrt{314}+\frac{6}{31}
Whakareatia te 3 ki te \frac{2}{31}, ka \frac{6}{31}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}