Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Tautapa x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=\frac{2\sqrt{314}+8943^{0}+\frac{3125}{5^{5}}+\sqrt{1}}{1.5-2^{-1}+\left(-1\right)^{2058}}
Tauwehea te 1256=2^{2}\times 314. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 314} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{314}. Tuhia te pūtakerua o te 2^{2}.
x=\frac{2\sqrt{314}+1+\frac{3125}{5^{5}}+\sqrt{1}}{1.5-2^{-1}+\left(-1\right)^{2058}}
Tātaihia te 8943 mā te pū o 0, kia riro ko 1.
x=\frac{2\sqrt{314}+1+\frac{3125}{3125}+\sqrt{1}}{1.5-2^{-1}+\left(-1\right)^{2058}}
Tātaihia te 5 mā te pū o 5, kia riro ko 3125.
x=\frac{2\sqrt{314}+1+1+\sqrt{1}}{1.5-2^{-1}+\left(-1\right)^{2058}}
Whakawehea te 3125 ki te 3125, kia riro ko 1.
x=\frac{2\sqrt{314}+2+\sqrt{1}}{1.5-2^{-1}+\left(-1\right)^{2058}}
Tāpirihia te 1 ki te 1, ka 2.
x=\frac{2\sqrt{314}+2+1}{1.5-2^{-1}+\left(-1\right)^{2058}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
x=\frac{2\sqrt{314}+3}{1.5-2^{-1}+\left(-1\right)^{2058}}
Tāpirihia te 2 ki te 1, ka 3.
x=\frac{2\sqrt{314}+3}{1.5-\frac{1}{2}+\left(-1\right)^{2058}}
Tātaihia te 2 mā te pū o -1, kia riro ko \frac{1}{2}.
x=\frac{2\sqrt{314}+3}{1+\left(-1\right)^{2058}}
Tangohia te \frac{1}{2} i te 1.5, ka 1.
x=\frac{2\sqrt{314}+3}{1+1}
Tātaihia te -1 mā te pū o 2058, kia riro ko 1.
x=\frac{2\sqrt{314}+3}{2}
Tāpirihia te 1 ki te 1, ka 2.
x=\sqrt{314}+\frac{3}{2}
Whakawehea ia wā o 2\sqrt{314}+3 ki te 2, kia riro ko \sqrt{314}+\frac{3}{2}.