Whakaoti mō x
x=4
x=0
Graph
Pātaitai
Polynomial
x = { x }^{ 2 } -3x
Tohaina
Kua tāruatia ki te papatopenga
x-x^{2}=-3x
Tangohia te x^{2} mai i ngā taha e rua.
x-x^{2}+3x=0
Me tāpiri te 3x ki ngā taha e rua.
4x-x^{2}=0
Pahekotia te x me 3x, ka 4x.
x\left(4-x\right)=0
Tauwehea te x.
x=0 x=4
Hei kimi otinga whārite, me whakaoti te x=0 me te 4-x=0.
x-x^{2}=-3x
Tangohia te x^{2} mai i ngā taha e rua.
x-x^{2}+3x=0
Me tāpiri te 3x ki ngā taha e rua.
4x-x^{2}=0
Pahekotia te x me 3x, ka 4x.
-x^{2}+4x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 4 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±4}{2\left(-1\right)}
Tuhia te pūtakerua o te 4^{2}.
x=\frac{-4±4}{-2}
Whakareatia 2 ki te -1.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{-4±4}{-2} ina he tāpiri te ±. Tāpiri -4 ki te 4.
x=0
Whakawehe 0 ki te -2.
x=-\frac{8}{-2}
Nā, me whakaoti te whārite x=\frac{-4±4}{-2} ina he tango te ±. Tango 4 mai i -4.
x=4
Whakawehe -8 ki te -2.
x=0 x=4
Kua oti te whārite te whakatau.
x-x^{2}=-3x
Tangohia te x^{2} mai i ngā taha e rua.
x-x^{2}+3x=0
Me tāpiri te 3x ki ngā taha e rua.
4x-x^{2}=0
Pahekotia te x me 3x, ka 4x.
-x^{2}+4x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+4x}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{4}{-1}x=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-4x=\frac{0}{-1}
Whakawehe 4 ki te -1.
x^{2}-4x=0
Whakawehe 0 ki te -1.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=4
Pūrua -2.
\left(x-2\right)^{2}=4
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=2 x-2=-2
Whakarūnātia.
x=4 x=0
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}