Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{x}{\frac{7\times 21}{3\times 2}-21}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Me whakarea te \frac{7}{3} ki te \frac{21}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x}{\frac{147}{6}-21}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 21}{3\times 2}.
\frac{x}{\frac{49}{2}-21}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Whakahekea te hautanga \frac{147}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{x}{\frac{49}{2}-\frac{42}{2}}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Me tahuri te 21 ki te hautau \frac{42}{2}.
\frac{x}{\frac{49-42}{2}}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Tā te mea he rite te tauraro o \frac{49}{2} me \frac{42}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{5}{3}+\frac{4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Tangohia te 42 i te 49, ka 7.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{5+4}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Tā te mea he rite te tauraro o \frac{5}{3} me \frac{4}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{9}{3}-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Tāpirihia te 5 ki te 4, ka 9.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{3-\frac{2}{6}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Whakawehea te 9 ki te 3, kia riro ko 3.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{3-\frac{1}{3}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{9}{3}-\frac{1}{3}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Me tahuri te 3 ki te hautau \frac{9}{3}.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{9-1}{3}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Tā te mea he rite te tauraro o \frac{9}{3} me \frac{1}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{3}{6}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Tangohia te 1 i te 9, ka 8.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{1}{2}+4-\frac{1}{3}}}}{\frac{4}{5}+2}
Whakahekea te hautanga \frac{3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{1}{2}+\frac{8}{2}-\frac{1}{3}}}}{\frac{4}{5}+2}
Me tahuri te 4 ki te hautau \frac{8}{2}.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{1+8}{2}-\frac{1}{3}}}}{\frac{4}{5}+2}
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{8}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{9}{2}-\frac{1}{3}}}}{\frac{4}{5}+2}
Tāpirihia te 1 ki te 8, ka 9.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{27}{6}-\frac{2}{6}}}}{\frac{4}{5}+2}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{9}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{27-2}{6}}}}{\frac{4}{5}+2}
Tā te mea he rite te tauraro o \frac{27}{6} me \frac{2}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{\frac{8}{3}}{\frac{25}{6}}}}{\frac{4}{5}+2}
Tangohia te 2 i te 27, ka 25.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{8}{3}\times \frac{6}{25}}}{\frac{4}{5}+2}
Whakawehe \frac{8}{3} ki te \frac{25}{6} mā te whakarea \frac{8}{3} ki te tau huripoki o \frac{25}{6}.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{8\times 6}{3\times 25}}}{\frac{4}{5}+2}
Me whakarea te \frac{8}{3} ki te \frac{6}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{48}{75}}}{\frac{4}{5}+2}
Mahia ngā whakarea i roto i te hautanga \frac{8\times 6}{3\times 25}.
\frac{x}{\frac{7}{2}}=\frac{\sqrt{\frac{16}{25}}}{\frac{4}{5}+2}
Whakahekea te hautanga \frac{48}{75} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{x}{\frac{7}{2}}=\frac{\frac{4}{5}}{\frac{4}{5}+2}
Tuhia anō te pūtake rua o te whakawehenga \frac{16}{25} hei whakawehenga o ngā pūtake rua \frac{\sqrt{16}}{\sqrt{25}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{x}{\frac{7}{2}}=\frac{\frac{4}{5}}{\frac{4}{5}+\frac{10}{5}}
Me tahuri te 2 ki te hautau \frac{10}{5}.
\frac{x}{\frac{7}{2}}=\frac{\frac{4}{5}}{\frac{4+10}{5}}
Tā te mea he rite te tauraro o \frac{4}{5} me \frac{10}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x}{\frac{7}{2}}=\frac{\frac{4}{5}}{\frac{14}{5}}
Tāpirihia te 4 ki te 10, ka 14.
\frac{x}{\frac{7}{2}}=\frac{4}{5}\times \frac{5}{14}
Whakawehe \frac{4}{5} ki te \frac{14}{5} mā te whakarea \frac{4}{5} ki te tau huripoki o \frac{14}{5}.
\frac{x}{\frac{7}{2}}=\frac{4\times 5}{5\times 14}
Me whakarea te \frac{4}{5} ki te \frac{5}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x}{\frac{7}{2}}=\frac{4}{14}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{x}{\frac{7}{2}}=\frac{2}{7}
Whakahekea te hautanga \frac{4}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{2}{7}\times \frac{7}{2}
Me whakarea ngā taha e rua ki te \frac{7}{2}.
x=1
Me whakakore atu te \frac{2}{7} me tōna tau utu \frac{7}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}