Whakaoti mō x, y
x=2\text{, }y=1
x=1\text{, }y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=3,y^{2}+x^{2}=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=3
Whakaotia te x+y=3 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+3
Me tango y mai i ngā taha e rua o te whārite.
y^{2}+\left(-y+3\right)^{2}=5
Whakakapia te -y+3 mō te x ki tērā atu whārite, y^{2}+x^{2}=5.
y^{2}+y^{2}-6y+9=5
Pūrua -y+3.
2y^{2}-6y+9=5
Tāpiri y^{2} ki te y^{2}.
2y^{2}-6y+4=0
Me tango 5 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\times 4}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\times 3\left(-1\right)\times 2 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6\right)±\sqrt{36-4\times 2\times 4}}{2\times 2}
Pūrua 1\times 3\left(-1\right)\times 2.
y=\frac{-\left(-6\right)±\sqrt{36-8\times 4}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
y=\frac{-\left(-6\right)±\sqrt{36-32}}{2\times 2}
Whakareatia -8 ki te 4.
y=\frac{-\left(-6\right)±\sqrt{4}}{2\times 2}
Tāpiri 36 ki te -32.
y=\frac{-\left(-6\right)±2}{2\times 2}
Tuhia te pūtakerua o te 4.
y=\frac{6±2}{2\times 2}
Ko te tauaro o 1\times 3\left(-1\right)\times 2 ko 6.
y=\frac{6±2}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
y=\frac{8}{4}
Nā, me whakaoti te whārite y=\frac{6±2}{4} ina he tāpiri te ±. Tāpiri 6 ki te 2.
y=2
Whakawehe 8 ki te 4.
y=\frac{4}{4}
Nā, me whakaoti te whārite y=\frac{6±2}{4} ina he tango te ±. Tango 2 mai i 6.
y=1
Whakawehe 4 ki te 4.
x=-2+3
E rua ngā otinga mō y: 2 me 1. Me whakakapi 2 mō y ki te whārite x=-y+3 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=1
Tāpiri -2 ki te 3.
x=-1+3
Me whakakapi te 1 ināianei mō te y ki te whārite x=-y+3 ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=2
Tāpiri -1 ki te 3.
x=1,y=2\text{ or }x=2,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}