x + 20 \% x = 1.56
Whakaoti mō x
x=1.3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+\frac{1}{5}x=1.56
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{6}{5}x=1.56
Pahekotia te x me \frac{1}{5}x, ka \frac{6}{5}x.
x=1.56\times \frac{5}{6}
Me whakarea ngā taha e rua ki te \frac{5}{6}, te tau utu o \frac{6}{5}.
x=\frac{39}{25}\times \frac{5}{6}
Me tahuri ki tau ā-ira 1.56 ki te hautau \frac{156}{100}. Whakahekea te hautanga \frac{156}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{39\times 5}{25\times 6}
Me whakarea te \frac{39}{25} ki te \frac{5}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{195}{150}
Mahia ngā whakarea i roto i te hautanga \frac{39\times 5}{25\times 6}.
x=\frac{13}{10}
Whakahekea te hautanga \frac{195}{150} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}