Whakaoti mō x, y
x = \frac{12}{5} = 2\frac{2}{5} = 2.4
y = \frac{24}{5} = 4\frac{4}{5} = 4.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x-2y=12
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x+2y=12,9x-2y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+12
Me tango 2y mai i ngā taha e rua o te whārite.
9\left(-2y+12\right)-2y=12
Whakakapia te -2y+12 mō te x ki tērā atu whārite, 9x-2y=12.
-18y+108-2y=12
Whakareatia 9 ki te -2y+12.
-20y+108=12
Tāpiri -18y ki te -2y.
-20y=-96
Me tango 108 mai i ngā taha e rua o te whārite.
y=\frac{24}{5}
Whakawehea ngā taha e rua ki te -20.
x=-2\times \frac{24}{5}+12
Whakaurua te \frac{24}{5} mō y ki x=-2y+12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{48}{5}+12
Whakareatia -2 ki te \frac{24}{5}.
x=\frac{12}{5}
Tāpiri 12 ki te -\frac{48}{5}.
x=\frac{12}{5},y=\frac{24}{5}
Kua oti te pūnaha te whakatau.
9x-2y=12
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x+2y=12,9x-2y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}1&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\9&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2\times 9}&-\frac{2}{-2-2\times 9}\\-\frac{9}{-2-2\times 9}&\frac{1}{-2-2\times 9}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{10}\\\frac{9}{20}&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 12+\frac{1}{10}\times 12\\\frac{9}{20}\times 12-\frac{1}{20}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{5}\\\frac{24}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{12}{5},y=\frac{24}{5}
Tangohia ngā huānga poukapa x me y.
9x-2y=12
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x+2y=12,9x-2y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9x+9\times 2y=9\times 12,9x-2y=12
Kia ōrite ai a x me 9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
9x+18y=108,9x-2y=12
Whakarūnātia.
9x-9x+18y+2y=108-12
Me tango 9x-2y=12 mai i 9x+18y=108 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18y+2y=108-12
Tāpiri 9x ki te -9x. Ka whakakore atu ngā kupu 9x me -9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
20y=108-12
Tāpiri 18y ki te 2y.
20y=96
Tāpiri 108 ki te -12.
y=\frac{24}{5}
Whakawehea ngā taha e rua ki te 20.
9x-2\times \frac{24}{5}=12
Whakaurua te \frac{24}{5} mō y ki 9x-2y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
9x-\frac{48}{5}=12
Whakareatia -2 ki te \frac{24}{5}.
9x=\frac{108}{5}
Me tāpiri \frac{48}{5} ki ngā taha e rua o te whārite.
x=\frac{12}{5}
Whakawehea ngā taha e rua ki te 9.
x=\frac{12}{5},y=\frac{24}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}