Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=-1,2x-3y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y-1
Me tango 2y mai i ngā taha e rua o te whārite.
2\left(-2y-1\right)-3y=12
Whakakapia te -2y-1 mō te x ki tērā atu whārite, 2x-3y=12.
-4y-2-3y=12
Whakareatia 2 ki te -2y-1.
-7y-2=12
Tāpiri -4y ki te -3y.
-7y=14
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te -7.
x=-2\left(-2\right)-1
Whakaurua te -2 mō y ki x=-2y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4-1
Whakareatia -2 ki te -2.
x=3
Tāpiri -1 ki te 4.
x=3,y=-2
Kua oti te pūnaha te whakatau.
x+2y=-1,2x-3y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}1&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-1\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-1\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-1\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2\times 2}&-\frac{2}{-3-2\times 2}\\-\frac{2}{-3-2\times 2}&\frac{1}{-3-2\times 2}\end{matrix}\right)\left(\begin{matrix}-1\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{2}{7}\\\frac{2}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-1\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-1\right)+\frac{2}{7}\times 12\\\frac{2}{7}\left(-1\right)-\frac{1}{7}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=-2
Tangohia ngā huānga poukapa x me y.
x+2y=-1,2x-3y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\times 2y=2\left(-1\right),2x-3y=12
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x+4y=-2,2x-3y=12
Whakarūnātia.
2x-2x+4y+3y=-2-12
Me tango 2x-3y=12 mai i 2x+4y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y+3y=-2-12
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=-2-12
Tāpiri 4y ki te 3y.
7y=-14
Tāpiri -2 ki te -12.
y=-2
Whakawehea ngā taha e rua ki te 7.
2x-3\left(-2\right)=12
Whakaurua te -2 mō y ki 2x-3y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+6=12
Whakareatia -3 ki te -2.
2x=6
Me tango 6 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 2.
x=3,y=-2
Kua oti te pūnaha te whakatau.