Whakaoti mō x
x = \frac{\sqrt{48999994} + 7000}{3} \approx 4666.66652381
x=\frac{7000-\sqrt{48999994}}{3}\approx 0.000142857
Graph
Tohaina
Kua tāruatia ki te papatopenga
xx+2xx+2=14000x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}+2xx+2=14000x
Whakareatia te x ki te x, ka x^{2}.
x^{2}+2x^{2}+2=14000x
Whakareatia te x ki te x, ka x^{2}.
3x^{2}+2=14000x
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
3x^{2}+2-14000x=0
Tangohia te 14000x mai i ngā taha e rua.
3x^{2}-14000x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14000\right)±\sqrt{\left(-14000\right)^{2}-4\times 3\times 2}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -14000 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14000\right)±\sqrt{196000000-4\times 3\times 2}}{2\times 3}
Pūrua -14000.
x=\frac{-\left(-14000\right)±\sqrt{196000000-12\times 2}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-14000\right)±\sqrt{196000000-24}}{2\times 3}
Whakareatia -12 ki te 2.
x=\frac{-\left(-14000\right)±\sqrt{195999976}}{2\times 3}
Tāpiri 196000000 ki te -24.
x=\frac{-\left(-14000\right)±2\sqrt{48999994}}{2\times 3}
Tuhia te pūtakerua o te 195999976.
x=\frac{14000±2\sqrt{48999994}}{2\times 3}
Ko te tauaro o -14000 ko 14000.
x=\frac{14000±2\sqrt{48999994}}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{48999994}+14000}{6}
Nā, me whakaoti te whārite x=\frac{14000±2\sqrt{48999994}}{6} ina he tāpiri te ±. Tāpiri 14000 ki te 2\sqrt{48999994}.
x=\frac{\sqrt{48999994}+7000}{3}
Whakawehe 14000+2\sqrt{48999994} ki te 6.
x=\frac{14000-2\sqrt{48999994}}{6}
Nā, me whakaoti te whārite x=\frac{14000±2\sqrt{48999994}}{6} ina he tango te ±. Tango 2\sqrt{48999994} mai i 14000.
x=\frac{7000-\sqrt{48999994}}{3}
Whakawehe 14000-2\sqrt{48999994} ki te 6.
x=\frac{\sqrt{48999994}+7000}{3} x=\frac{7000-\sqrt{48999994}}{3}
Kua oti te whārite te whakatau.
xx+2xx+2=14000x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}+2xx+2=14000x
Whakareatia te x ki te x, ka x^{2}.
x^{2}+2x^{2}+2=14000x
Whakareatia te x ki te x, ka x^{2}.
3x^{2}+2=14000x
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
3x^{2}+2-14000x=0
Tangohia te 14000x mai i ngā taha e rua.
3x^{2}-14000x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{3x^{2}-14000x}{3}=-\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{14000}{3}x=-\frac{2}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{14000}{3}x+\left(-\frac{7000}{3}\right)^{2}=-\frac{2}{3}+\left(-\frac{7000}{3}\right)^{2}
Whakawehea te -\frac{14000}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7000}{3}. Nā, tāpiria te pūrua o te -\frac{7000}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{14000}{3}x+\frac{49000000}{9}=-\frac{2}{3}+\frac{49000000}{9}
Pūruatia -\frac{7000}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{14000}{3}x+\frac{49000000}{9}=\frac{48999994}{9}
Tāpiri -\frac{2}{3} ki te \frac{49000000}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7000}{3}\right)^{2}=\frac{48999994}{9}
Tauwehea x^{2}-\frac{14000}{3}x+\frac{49000000}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7000}{3}\right)^{2}}=\sqrt{\frac{48999994}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7000}{3}=\frac{\sqrt{48999994}}{3} x-\frac{7000}{3}=-\frac{\sqrt{48999994}}{3}
Whakarūnātia.
x=\frac{\sqrt{48999994}+7000}{3} x=\frac{7000-\sqrt{48999994}}{3}
Me tāpiri \frac{7000}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}