Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+2\right)^{2}=\left(\sqrt{2x+7}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+4x+4=\left(\sqrt{2x+7}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+4=2x+7
Tātaihia te \sqrt{2x+7} mā te pū o 2, kia riro ko 2x+7.
x^{2}+4x+4-2x=7
Tangohia te 2x mai i ngā taha e rua.
x^{2}+2x+4=7
Pahekotia te 4x me -2x, ka 2x.
x^{2}+2x+4-7=0
Tangohia te 7 mai i ngā taha e rua.
x^{2}+2x-3=0
Tangohia te 7 i te 4, ka -3.
a+b=2 ab=-3
Hei whakaoti i te whārite, whakatauwehea te x^{2}+2x-3 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-1\right)\left(x+3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=1 x=-3
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+3=0.
1+2=\sqrt{2\times 1+7}
Whakakapia te 1 mō te x i te whārite x+2=\sqrt{2x+7}.
3=3
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
-3+2=\sqrt{2\left(-3\right)+7}
Whakakapia te -3 mō te x i te whārite x+2=\sqrt{2x+7}.
-1=1
Whakarūnātia. Ko te uara x=-3 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=1
Ko te whārite x+2=\sqrt{2x+7} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}