Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x+2\right)\left(2x-1\right)}{2x-1}+\frac{2}{2x-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x+2 ki te \frac{2x-1}{2x-1}.
\frac{\left(x+2\right)\left(2x-1\right)+2}{2x-1}
Tā te mea he rite te tauraro o \frac{\left(x+2\right)\left(2x-1\right)}{2x-1} me \frac{2}{2x-1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2x^{2}-x+4x-2+2}{2x-1}
Mahia ngā whakarea i roto o \left(x+2\right)\left(2x-1\right)+2.
\frac{2x^{2}+3x}{2x-1}
Whakakotahitia ngā kupu rite i 2x^{2}-x+4x-2+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(2x-1\right)}{2x-1}+\frac{2}{2x-1})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x+2 ki te \frac{2x-1}{2x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(2x-1\right)+2}{2x-1})
Tā te mea he rite te tauraro o \frac{\left(x+2\right)\left(2x-1\right)}{2x-1} me \frac{2}{2x-1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}-x+4x-2+2}{2x-1})
Mahia ngā whakarea i roto o \left(x+2\right)\left(2x-1\right)+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}+3x}{2x-1})
Whakakotahitia ngā kupu rite i 2x^{2}-x+4x-2+2.
\frac{\left(2x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+3x^{1})-\left(2x^{2}+3x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}-1)}{\left(2x^{1}-1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(2x^{1}-1\right)\left(2\times 2x^{2-1}+3x^{1-1}\right)-\left(2x^{2}+3x^{1}\right)\times 2x^{1-1}}{\left(2x^{1}-1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(2x^{1}-1\right)\left(4x^{1}+3x^{0}\right)-\left(2x^{2}+3x^{1}\right)\times 2x^{0}}{\left(2x^{1}-1\right)^{2}}
Whakarūnātia.
\frac{2x^{1}\times 4x^{1}+2x^{1}\times 3x^{0}-4x^{1}-3x^{0}-\left(2x^{2}+3x^{1}\right)\times 2x^{0}}{\left(2x^{1}-1\right)^{2}}
Whakareatia 2x^{1}-1 ki te 4x^{1}+3x^{0}.
\frac{2x^{1}\times 4x^{1}+2x^{1}\times 3x^{0}-4x^{1}-3x^{0}-\left(2x^{2}\times 2x^{0}+3x^{1}\times 2x^{0}\right)}{\left(2x^{1}-1\right)^{2}}
Whakareatia 2x^{2}+3x^{1} ki te 2x^{0}.
\frac{2\times 4x^{1+1}+2\times 3x^{1}-4x^{1}-3x^{0}-\left(2\times 2x^{2}+3\times 2x^{1}\right)}{\left(2x^{1}-1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{8x^{2}+6x^{1}-4x^{1}-3x^{0}-\left(4x^{2}+6x^{1}\right)}{\left(2x^{1}-1\right)^{2}}
Whakarūnātia.
\frac{4x^{2}-4x^{1}-3x^{0}}{\left(2x^{1}-1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{4x^{2}-4x-3x^{0}}{\left(2x-1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{4x^{2}-4x-3}{\left(2x-1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.