Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+1\right)x+x+1-4=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+1.
x^{2}+x+x+1-4=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te x.
x^{2}+2x+1-4=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Pahekotia te x me x, ka 2x.
x^{2}+2x-3=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Tangohia te 4 i te 1, ka -3.
x^{2}+2x-3=x^{2}+x+\left(x+1\right)\left(-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te x.
x^{2}+2x-3=x^{2}+x-x-1
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te -1.
x^{2}+2x-3=x^{2}-1
Pahekotia te x me -x, ka 0.
x^{2}+2x-3-x^{2}=-1
Tangohia te x^{2} mai i ngā taha e rua.
2x-3=-1
Pahekotia te x^{2} me -x^{2}, ka 0.
2x=-1+3
Me tāpiri te 3 ki ngā taha e rua.
2x=2
Tāpirihia te -1 ki te 3, ka 2.
x=\frac{2}{2}
Whakawehea ngā taha e rua ki te 2.
x=1
Whakawehea te 2 ki te 2, kia riro ko 1.