Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)^{2}=\left(\sqrt{2x+5}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+2x+1=\left(\sqrt{2x+5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1=2x+5
Tātaihia te \sqrt{2x+5} mā te pū o 2, kia riro ko 2x+5.
x^{2}+2x+1-2x=5
Tangohia te 2x mai i ngā taha e rua.
x^{2}+1=5
Pahekotia te 2x me -2x, ka 0.
x^{2}+1-5=0
Tangohia te 5 mai i ngā taha e rua.
x^{2}-4=0
Tangohia te 5 i te 1, ka -4.
\left(x-2\right)\left(x+2\right)=0
Whakaarohia te x^{2}-4. Tuhia anō te x^{2}-4 hei x^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+2=0.
2+1=\sqrt{2\times 2+5}
Whakakapia te 2 mō te x i te whārite x+1=\sqrt{2x+5}.
3=3
Whakarūnātia. Ko te uara x=2 kua ngata te whārite.
-2+1=\sqrt{2\left(-2\right)+5}
Whakakapia te -2 mō te x i te whārite x+1=\sqrt{2x+5}.
-1=1
Whakarūnātia. Ko te uara x=-2 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=2
Ko te whārite x+1=\sqrt{2x+5} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}