Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+1+\frac{3x}{\left(x-3\right)\left(x+2\right)}
Tauwehea te x^{2}-x-6.
\frac{\left(x+1\right)\left(x-3\right)\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}+\frac{3x}{\left(x-3\right)\left(x+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x+1 ki te \frac{\left(x-3\right)\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}.
\frac{\left(x+1\right)\left(x-3\right)\left(x+2\right)+3x}{\left(x-3\right)\left(x+2\right)}
Tā te mea he rite te tauraro o \frac{\left(x+1\right)\left(x-3\right)\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} me \frac{3x}{\left(x-3\right)\left(x+2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x^{3}-x^{2}-6x+x^{2}-x-6+3x}{\left(x-3\right)\left(x+2\right)}
Mahia ngā whakarea i roto o \left(x+1\right)\left(x-3\right)\left(x+2\right)+3x.
\frac{x^{3}-4x-6}{\left(x-3\right)\left(x+2\right)}
Whakakotahitia ngā kupu rite i x^{3}-x^{2}-6x+x^{2}-x-6+3x.
\frac{x^{3}-4x-6}{x^{2}-x-6}
Whakarohaina te \left(x-3\right)\left(x+2\right).