Whakaoti mō x
x=210-2z-3y
Whakaoti mō y
y=-\frac{x}{3}-\frac{2z}{3}+70
Tohaina
Kua tāruatia ki te papatopenga
x+5+2z=215-3y
Tangohia te 3y mai i ngā taha e rua.
x+2z=215-3y-5
Tangohia te 5 mai i ngā taha e rua.
x+2z=210-3y
Tangohia te 5 i te 215, ka 210.
x=210-3y-2z
Tangohia te 2z mai i ngā taha e rua.
3y+5+2z=215-x
Tangohia te x mai i ngā taha e rua.
3y+2z=215-x-5
Tangohia te 5 mai i ngā taha e rua.
3y+2z=210-x
Tangohia te 5 i te 215, ka 210.
3y=210-x-2z
Tangohia te 2z mai i ngā taha e rua.
3y=210-2z-x
He hanga arowhānui tō te whārite.
\frac{3y}{3}=\frac{210-2z-x}{3}
Whakawehea ngā taha e rua ki te 3.
y=\frac{210-2z-x}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y=-\frac{x}{3}-\frac{2z}{3}+70
Whakawehe 210-x-2z ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}