Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{4x+1}=5-x
Me tango x mai i ngā taha e rua o te whārite.
\left(\sqrt{4x+1}\right)^{2}=\left(5-x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4x+1=\left(5-x\right)^{2}
Tātaihia te \sqrt{4x+1} mā te pū o 2, kia riro ko 4x+1.
4x+1=25-10x+x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-x\right)^{2}.
4x+1-25=-10x+x^{2}
Tangohia te 25 mai i ngā taha e rua.
4x-24=-10x+x^{2}
Tangohia te 25 i te 1, ka -24.
4x-24+10x=x^{2}
Me tāpiri te 10x ki ngā taha e rua.
14x-24=x^{2}
Pahekotia te 4x me 10x, ka 14x.
14x-24-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+14x-24=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=14 ab=-\left(-24\right)=24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,24 2,12 3,8 4,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
1+24=25 2+12=14 3+8=11 4+6=10
Tātaihia te tapeke mō ia takirua.
a=12 b=2
Ko te otinga te takirua ka hoatu i te tapeke 14.
\left(-x^{2}+12x\right)+\left(2x-24\right)
Tuhia anō te -x^{2}+14x-24 hei \left(-x^{2}+12x\right)+\left(2x-24\right).
-x\left(x-12\right)+2\left(x-12\right)
Tauwehea te -x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-12\right)\left(-x+2\right)
Whakatauwehea atu te kīanga pātahi x-12 mā te whakamahi i te āhuatanga tātai tohatoha.
x=12 x=2
Hei kimi otinga whārite, me whakaoti te x-12=0 me te -x+2=0.
12+\sqrt{4\times 12+1}=5
Whakakapia te 12 mō te x i te whārite x+\sqrt{4x+1}=5.
19=5
Whakarūnātia. Ko te uara x=12 kāore e ngata ana ki te whārite.
2+\sqrt{4\times 2+1}=5
Whakakapia te 2 mō te x i te whārite x+\sqrt{4x+1}=5.
5=5
Whakarūnātia. Ko te uara x=2 kua ngata te whārite.
x=2
Ko te whārite \sqrt{4x+1}=5-x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}