Whakaoti mō x
x = \frac{\sqrt{20905} - 5}{8} \approx 17.448201847
x=\frac{-\sqrt{20905}-5}{8}\approx -18.698201847
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+\frac{4}{5}x^{2}=300-39
Whakareatia te x ki te x, ka x^{2}.
x+\frac{4}{5}x^{2}=261
Tangohia te 39 i te 300, ka 261.
x+\frac{4}{5}x^{2}-261=0
Tangohia te 261 mai i ngā taha e rua.
\frac{4}{5}x^{2}+x-261=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{4}{5}\left(-261\right)}}{2\times \frac{4}{5}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{4}{5} mō a, 1 mō b, me -261 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{4}{5}\left(-261\right)}}{2\times \frac{4}{5}}
Pūrua 1.
x=\frac{-1±\sqrt{1-\frac{16}{5}\left(-261\right)}}{2\times \frac{4}{5}}
Whakareatia -4 ki te \frac{4}{5}.
x=\frac{-1±\sqrt{1+\frac{4176}{5}}}{2\times \frac{4}{5}}
Whakareatia -\frac{16}{5} ki te -261.
x=\frac{-1±\sqrt{\frac{4181}{5}}}{2\times \frac{4}{5}}
Tāpiri 1 ki te \frac{4176}{5}.
x=\frac{-1±\frac{\sqrt{20905}}{5}}{2\times \frac{4}{5}}
Tuhia te pūtakerua o te \frac{4181}{5}.
x=\frac{-1±\frac{\sqrt{20905}}{5}}{\frac{8}{5}}
Whakareatia 2 ki te \frac{4}{5}.
x=\frac{\frac{\sqrt{20905}}{5}-1}{\frac{8}{5}}
Nā, me whakaoti te whārite x=\frac{-1±\frac{\sqrt{20905}}{5}}{\frac{8}{5}} ina he tāpiri te ±. Tāpiri -1 ki te \frac{\sqrt{20905}}{5}.
x=\frac{\sqrt{20905}-5}{8}
Whakawehe -1+\frac{\sqrt{20905}}{5} ki te \frac{8}{5} mā te whakarea -1+\frac{\sqrt{20905}}{5} ki te tau huripoki o \frac{8}{5}.
x=\frac{-\frac{\sqrt{20905}}{5}-1}{\frac{8}{5}}
Nā, me whakaoti te whārite x=\frac{-1±\frac{\sqrt{20905}}{5}}{\frac{8}{5}} ina he tango te ±. Tango \frac{\sqrt{20905}}{5} mai i -1.
x=\frac{-\sqrt{20905}-5}{8}
Whakawehe -1-\frac{\sqrt{20905}}{5} ki te \frac{8}{5} mā te whakarea -1-\frac{\sqrt{20905}}{5} ki te tau huripoki o \frac{8}{5}.
x=\frac{\sqrt{20905}-5}{8} x=\frac{-\sqrt{20905}-5}{8}
Kua oti te whārite te whakatau.
x+\frac{4}{5}x^{2}=300-39
Whakareatia te x ki te x, ka x^{2}.
x+\frac{4}{5}x^{2}=261
Tangohia te 39 i te 300, ka 261.
\frac{4}{5}x^{2}+x=261
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{\frac{4}{5}x^{2}+x}{\frac{4}{5}}=\frac{261}{\frac{4}{5}}
Whakawehea ngā taha e rua o te whārite ki te \frac{4}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{1}{\frac{4}{5}}x=\frac{261}{\frac{4}{5}}
Mā te whakawehe ki te \frac{4}{5} ka wetekia te whakareanga ki te \frac{4}{5}.
x^{2}+\frac{5}{4}x=\frac{261}{\frac{4}{5}}
Whakawehe 1 ki te \frac{4}{5} mā te whakarea 1 ki te tau huripoki o \frac{4}{5}.
x^{2}+\frac{5}{4}x=\frac{1305}{4}
Whakawehe 261 ki te \frac{4}{5} mā te whakarea 261 ki te tau huripoki o \frac{4}{5}.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=\frac{1305}{4}+\left(\frac{5}{8}\right)^{2}
Whakawehea te \frac{5}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{8}. Nā, tāpiria te pūrua o te \frac{5}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{1305}{4}+\frac{25}{64}
Pūruatia \frac{5}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{20905}{64}
Tāpiri \frac{1305}{4} ki te \frac{25}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{8}\right)^{2}=\frac{20905}{64}
Tauwehea x^{2}+\frac{5}{4}x+\frac{25}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{20905}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{8}=\frac{\sqrt{20905}}{8} x+\frac{5}{8}=-\frac{\sqrt{20905}}{8}
Whakarūnātia.
x=\frac{\sqrt{20905}-5}{8} x=\frac{-\sqrt{20905}-5}{8}
Me tango \frac{5}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}