Whakaoti mō x
x=-1
x = \frac{19}{6} = 3\frac{1}{6} \approx 3.166666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x+3\left(3x+1\right)-2\left(x-2\right)=6x^{2}-12
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
6x+9x+3-2\left(x-2\right)=6x^{2}-12
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x+1.
15x+3-2\left(x-2\right)=6x^{2}-12
Pahekotia te 6x me 9x, ka 15x.
15x+3-2x+4=6x^{2}-12
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-2.
13x+3+4=6x^{2}-12
Pahekotia te 15x me -2x, ka 13x.
13x+7=6x^{2}-12
Tāpirihia te 3 ki te 4, ka 7.
13x+7-6x^{2}=-12
Tangohia te 6x^{2} mai i ngā taha e rua.
13x+7-6x^{2}+12=0
Me tāpiri te 12 ki ngā taha e rua.
13x+19-6x^{2}=0
Tāpirihia te 7 ki te 12, ka 19.
-6x^{2}+13x+19=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=13 ab=-6\times 19=-114
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -6x^{2}+ax+bx+19. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,114 -2,57 -3,38 -6,19
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -114.
-1+114=113 -2+57=55 -3+38=35 -6+19=13
Tātaihia te tapeke mō ia takirua.
a=19 b=-6
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(-6x^{2}+19x\right)+\left(-6x+19\right)
Tuhia anō te -6x^{2}+13x+19 hei \left(-6x^{2}+19x\right)+\left(-6x+19\right).
-x\left(6x-19\right)-\left(6x-19\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(6x-19\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi 6x-19 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{19}{6} x=-1
Hei kimi otinga whārite, me whakaoti te 6x-19=0 me te -x-1=0.
6x+3\left(3x+1\right)-2\left(x-2\right)=6x^{2}-12
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
6x+9x+3-2\left(x-2\right)=6x^{2}-12
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x+1.
15x+3-2\left(x-2\right)=6x^{2}-12
Pahekotia te 6x me 9x, ka 15x.
15x+3-2x+4=6x^{2}-12
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-2.
13x+3+4=6x^{2}-12
Pahekotia te 15x me -2x, ka 13x.
13x+7=6x^{2}-12
Tāpirihia te 3 ki te 4, ka 7.
13x+7-6x^{2}=-12
Tangohia te 6x^{2} mai i ngā taha e rua.
13x+7-6x^{2}+12=0
Me tāpiri te 12 ki ngā taha e rua.
13x+19-6x^{2}=0
Tāpirihia te 7 ki te 12, ka 19.
-6x^{2}+13x+19=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-13±\sqrt{13^{2}-4\left(-6\right)\times 19}}{2\left(-6\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -6 mō a, 13 mō b, me 19 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-6\right)\times 19}}{2\left(-6\right)}
Pūrua 13.
x=\frac{-13±\sqrt{169+24\times 19}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
x=\frac{-13±\sqrt{169+456}}{2\left(-6\right)}
Whakareatia 24 ki te 19.
x=\frac{-13±\sqrt{625}}{2\left(-6\right)}
Tāpiri 169 ki te 456.
x=\frac{-13±25}{2\left(-6\right)}
Tuhia te pūtakerua o te 625.
x=\frac{-13±25}{-12}
Whakareatia 2 ki te -6.
x=\frac{12}{-12}
Nā, me whakaoti te whārite x=\frac{-13±25}{-12} ina he tāpiri te ±. Tāpiri -13 ki te 25.
x=-1
Whakawehe 12 ki te -12.
x=-\frac{38}{-12}
Nā, me whakaoti te whārite x=\frac{-13±25}{-12} ina he tango te ±. Tango 25 mai i -13.
x=\frac{19}{6}
Whakahekea te hautanga \frac{-38}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-1 x=\frac{19}{6}
Kua oti te whārite te whakatau.
6x+3\left(3x+1\right)-2\left(x-2\right)=6x^{2}-12
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
6x+9x+3-2\left(x-2\right)=6x^{2}-12
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x+1.
15x+3-2\left(x-2\right)=6x^{2}-12
Pahekotia te 6x me 9x, ka 15x.
15x+3-2x+4=6x^{2}-12
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-2.
13x+3+4=6x^{2}-12
Pahekotia te 15x me -2x, ka 13x.
13x+7=6x^{2}-12
Tāpirihia te 3 ki te 4, ka 7.
13x+7-6x^{2}=-12
Tangohia te 6x^{2} mai i ngā taha e rua.
13x-6x^{2}=-12-7
Tangohia te 7 mai i ngā taha e rua.
13x-6x^{2}=-19
Tangohia te 7 i te -12, ka -19.
-6x^{2}+13x=-19
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-6x^{2}+13x}{-6}=-\frac{19}{-6}
Whakawehea ngā taha e rua ki te -6.
x^{2}+\frac{13}{-6}x=-\frac{19}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
x^{2}-\frac{13}{6}x=-\frac{19}{-6}
Whakawehe 13 ki te -6.
x^{2}-\frac{13}{6}x=\frac{19}{6}
Whakawehe -19 ki te -6.
x^{2}-\frac{13}{6}x+\left(-\frac{13}{12}\right)^{2}=\frac{19}{6}+\left(-\frac{13}{12}\right)^{2}
Whakawehea te -\frac{13}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{12}. Nā, tāpiria te pūrua o te -\frac{13}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{19}{6}+\frac{169}{144}
Pūruatia -\frac{13}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{625}{144}
Tāpiri \frac{19}{6} ki te \frac{169}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{13}{12}\right)^{2}=\frac{625}{144}
Tauwehea x^{2}-\frac{13}{6}x+\frac{169}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{12}\right)^{2}}=\sqrt{\frac{625}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{13}{12}=\frac{25}{12} x-\frac{13}{12}=-\frac{25}{12}
Whakarūnātia.
x=\frac{19}{6} x=-1
Me tāpiri \frac{13}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}