Whakaoti mō x
x=\frac{7}{9}\approx 0.777777778
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+\frac{4}{6}-\frac{3}{6}=\frac{17}{18}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{2}{3} me \frac{1}{2} ki te hautau me te tautūnga 6.
x+\frac{4-3}{6}=\frac{17}{18}
Tā te mea he rite te tauraro o \frac{4}{6} me \frac{3}{6}, me tango rāua mā te tango i ō raua taurunga.
x+\frac{1}{6}=\frac{17}{18}
Tangohia te 3 i te 4, ka 1.
x=\frac{17}{18}-\frac{1}{6}
Tangohia te \frac{1}{6} mai i ngā taha e rua.
x=\frac{17}{18}-\frac{3}{18}
Ko te maha noa iti rawa atu o 18 me 6 ko 18. Me tahuri \frac{17}{18} me \frac{1}{6} ki te hautau me te tautūnga 18.
x=\frac{17-3}{18}
Tā te mea he rite te tauraro o \frac{17}{18} me \frac{3}{18}, me tango rāua mā te tango i ō raua taurunga.
x=\frac{14}{18}
Tangohia te 3 i te 17, ka 14.
x=\frac{7}{9}
Whakahekea te hautanga \frac{14}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}