Whakaoti mō x
x=\sqrt{361945}+671\approx 1272.618649977
x=671-\sqrt{361945}\approx 69.381350023
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-x+1266\right)x+120\times 66=76\left(-x+1266\right)
Tē taea kia ōrite te tāupe x ki 1266 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -x+1266.
-x^{2}+1266x+120\times 66=76\left(-x+1266\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -x+1266 ki te x.
-x^{2}+1266x+7920=76\left(-x+1266\right)
Whakareatia te 120 ki te 66, ka 7920.
-x^{2}+1266x+7920=-76x+96216
Whakamahia te āhuatanga tohatoha hei whakarea te 76 ki te -x+1266.
-x^{2}+1266x+7920+76x=96216
Me tāpiri te 76x ki ngā taha e rua.
-x^{2}+1342x+7920=96216
Pahekotia te 1266x me 76x, ka 1342x.
-x^{2}+1342x+7920-96216=0
Tangohia te 96216 mai i ngā taha e rua.
-x^{2}+1342x-88296=0
Tangohia te 96216 i te 7920, ka -88296.
x=\frac{-1342±\sqrt{1342^{2}-4\left(-1\right)\left(-88296\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1342 mō b, me -88296 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1342±\sqrt{1800964-4\left(-1\right)\left(-88296\right)}}{2\left(-1\right)}
Pūrua 1342.
x=\frac{-1342±\sqrt{1800964+4\left(-88296\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-1342±\sqrt{1800964-353184}}{2\left(-1\right)}
Whakareatia 4 ki te -88296.
x=\frac{-1342±\sqrt{1447780}}{2\left(-1\right)}
Tāpiri 1800964 ki te -353184.
x=\frac{-1342±2\sqrt{361945}}{2\left(-1\right)}
Tuhia te pūtakerua o te 1447780.
x=\frac{-1342±2\sqrt{361945}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{361945}-1342}{-2}
Nā, me whakaoti te whārite x=\frac{-1342±2\sqrt{361945}}{-2} ina he tāpiri te ±. Tāpiri -1342 ki te 2\sqrt{361945}.
x=671-\sqrt{361945}
Whakawehe -1342+2\sqrt{361945} ki te -2.
x=\frac{-2\sqrt{361945}-1342}{-2}
Nā, me whakaoti te whārite x=\frac{-1342±2\sqrt{361945}}{-2} ina he tango te ±. Tango 2\sqrt{361945} mai i -1342.
x=\sqrt{361945}+671
Whakawehe -1342-2\sqrt{361945} ki te -2.
x=671-\sqrt{361945} x=\sqrt{361945}+671
Kua oti te whārite te whakatau.
\left(-x+1266\right)x+120\times 66=76\left(-x+1266\right)
Tē taea kia ōrite te tāupe x ki 1266 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -x+1266.
-x^{2}+1266x+120\times 66=76\left(-x+1266\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -x+1266 ki te x.
-x^{2}+1266x+7920=76\left(-x+1266\right)
Whakareatia te 120 ki te 66, ka 7920.
-x^{2}+1266x+7920=-76x+96216
Whakamahia te āhuatanga tohatoha hei whakarea te 76 ki te -x+1266.
-x^{2}+1266x+7920+76x=96216
Me tāpiri te 76x ki ngā taha e rua.
-x^{2}+1342x+7920=96216
Pahekotia te 1266x me 76x, ka 1342x.
-x^{2}+1342x=96216-7920
Tangohia te 7920 mai i ngā taha e rua.
-x^{2}+1342x=88296
Tangohia te 7920 i te 96216, ka 88296.
\frac{-x^{2}+1342x}{-1}=\frac{88296}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{1342}{-1}x=\frac{88296}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-1342x=\frac{88296}{-1}
Whakawehe 1342 ki te -1.
x^{2}-1342x=-88296
Whakawehe 88296 ki te -1.
x^{2}-1342x+\left(-671\right)^{2}=-88296+\left(-671\right)^{2}
Whakawehea te -1342, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -671. Nā, tāpiria te pūrua o te -671 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-1342x+450241=-88296+450241
Pūrua -671.
x^{2}-1342x+450241=361945
Tāpiri -88296 ki te 450241.
\left(x-671\right)^{2}=361945
Tauwehea x^{2}-1342x+450241. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-671\right)^{2}}=\sqrt{361945}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-671=\sqrt{361945} x-671=-\sqrt{361945}
Whakarūnātia.
x=\sqrt{361945}+671 x=671-\sqrt{361945}
Me tāpiri 671 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}