Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-3\right)x+1=9\left(x-3\right)
Tē taea kia ōrite te tāupe x ki 3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-3.
x^{2}-3x+1=9\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te x.
x^{2}-3x+1=9x-27
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x-3.
x^{2}-3x+1-9x=-27
Tangohia te 9x mai i ngā taha e rua.
x^{2}-12x+1=-27
Pahekotia te -3x me -9x, ka -12x.
x^{2}-12x+1+27=0
Me tāpiri te 27 ki ngā taha e rua.
x^{2}-12x+28=0
Tāpirihia te 1 ki te 27, ka 28.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 28}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -12 mō b, me 28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 28}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-112}}{2}
Whakareatia -4 ki te 28.
x=\frac{-\left(-12\right)±\sqrt{32}}{2}
Tāpiri 144 ki te -112.
x=\frac{-\left(-12\right)±4\sqrt{2}}{2}
Tuhia te pūtakerua o te 32.
x=\frac{12±4\sqrt{2}}{2}
Ko te tauaro o -12 ko 12.
x=\frac{4\sqrt{2}+12}{2}
Nā, me whakaoti te whārite x=\frac{12±4\sqrt{2}}{2} ina he tāpiri te ±. Tāpiri 12 ki te 4\sqrt{2}.
x=2\sqrt{2}+6
Whakawehe 12+4\sqrt{2} ki te 2.
x=\frac{12-4\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{12±4\sqrt{2}}{2} ina he tango te ±. Tango 4\sqrt{2} mai i 12.
x=6-2\sqrt{2}
Whakawehe 12-4\sqrt{2} ki te 2.
x=2\sqrt{2}+6 x=6-2\sqrt{2}
Kua oti te whārite te whakatau.
\left(x-3\right)x+1=9\left(x-3\right)
Tē taea kia ōrite te tāupe x ki 3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-3.
x^{2}-3x+1=9\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te x.
x^{2}-3x+1=9x-27
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x-3.
x^{2}-3x+1-9x=-27
Tangohia te 9x mai i ngā taha e rua.
x^{2}-12x+1=-27
Pahekotia te -3x me -9x, ka -12x.
x^{2}-12x=-27-1
Tangohia te 1 mai i ngā taha e rua.
x^{2}-12x=-28
Tangohia te 1 i te -27, ka -28.
x^{2}-12x+\left(-6\right)^{2}=-28+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=-28+36
Pūrua -6.
x^{2}-12x+36=8
Tāpiri -28 ki te 36.
\left(x-6\right)^{2}=8
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{8}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=2\sqrt{2} x-6=-2\sqrt{2}
Whakarūnātia.
x=2\sqrt{2}+6 x=6-2\sqrt{2}
Me tāpiri 6 ki ngā taha e rua o te whārite.